Advertisement

Curcumin in Cancer Prevention

  • Akash Sabarwal
  • Kunal Kumar
  • Ritis Shyanti
  • Rana P. Singh
Chapter

Abstract

Cancer has become one of the leading causes of death worldwide. Presently, available chemotherapeutic agents have several limitations including severe side effects. Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma longa. Curcumin has been used extensively as spice in many Asian countries and in Ayurvedic medicines. It is nontoxic and has shown to possess various medicinal properties including antioxidant, anti-inflammatory, and antibacterial. Recent investigations have shown that curcumin exerts anticancer properties in various cancer cell models and targets variety of biological pathways involved in cell cycle regulation, apoptosis, mutagenesis, angiogenesis, and metastasis. NF-κB, p53, Nrf2, NFAT, MMPs, STATs, and uPA are important molecular targets of curcumin in multiple cancer models. Enzymes involved in redox balance inside the cells including superoxide dismutases, catalase, and glutathione peroxidase are modulated by curcumin. However, bioavailability, water insolubility, short life span, and rapid systemic clearance of curcumin have posed limitations in developing curcumin as an effective chemotherapeutic agent. To address these challenges, curcumin has been used in combinations with many other chemotherapeutic drugs which have shown encouraging results. This chapter deals with the current information available for the cancer chemopreventive activities of curcumin in various in vitro and in vivo cancer models including epidemiological studies and human trials. Also, molecular pathways involved in the manifestation of biological activities of curcumin against various processes of cancer development have been discussed.

Keywords

Curcumin Apoptosis ROS Cell cycle Angiogenesis Metastasis Radio-sensitizer Radio-protectant 

References

  1. 1.
    Kunnumakkara AB et al (2016) Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol 174:1325–1348PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gupta SC et al (2012) Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 39(3):283–299PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rainey N et al (2015) Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis 6:e2003PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Aggarwal BB, Gupta SC, Sung B (2013) Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 169(8):1672–1692PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Siwak DR et al (2005) Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104(4):879–890PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Aggarwal S et al (2004) Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-kappaB signaling. Int J Cancer 111(5):679–692PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    LoTempio MM et al (2005) Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 11(19 Pt 1):6994–7002PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wang Z et al (2008) Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sci 83(7-8):293–300PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Elattar TM, Virji AS (2000) The inhibitory effect of curcumin, genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro. Anticancer Res 20(3a):1733–1738PubMedGoogle Scholar
  12. 12.
    Mukhopadhyay A et al (2001) Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene 20(52):7597–7609PubMedCrossRefGoogle Scholar
  13. 13.
    Mehta K et al (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anti-Cancer Drugs 8(5):470–481PubMedCrossRefGoogle Scholar
  14. 14.
    Hanif R et al (1997) Curcumin, a natural plant phenolic food additive, inhibits cell proliferation and induces cell cycle changes in colon adenocarcinoma cell lines by a prostaglandin-independent pathway. J Lab Clin Med 130(6):576–584PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lin YG et al (2007) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 13(11):3423–3430PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hussain AR et al (2008) Curcumin suppresses constitutive activation of nuclear factor-kappa B and requires functional Bax to induce apoptosis in Burkitt's lymphoma cell lines. Mol Cancer Ther 7(10):3318–3329PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Shakibaei M et al (2014) Curcumin chemosensitizes 5-fluorouracil resistant MMR-deficient human colon cancer cells in high density cultures. PLoS One 9(1):e85397PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Waghela BN et al (2015) Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PLoS One 10(2):e0117526PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chearwae W et al (2004) Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem Pharmacol 68(10):2043–2052PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Singh M, Singh N (2009) Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem 325(1-2):107–119PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Halder RC et al (2015) Curcuminoids and omega-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon gamma production. Front Physiol 6:129PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fiala M (2015) Curcumin and omega-3 fatty acids enhance NK cell-induced apoptosis of pancreatic cancer cells but curcumin inhibits interferon-gamma production: benefits of omega-3 with curcumin against cancer. Molecules 20(2):3020–3026PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Imran M et al (2016) Cucurmin; anticancer and antitumor perspectives – a comprehensive review. Crit Rev Food Sci Nutr 58:1271–1293CrossRefGoogle Scholar
  24. 24.
    Labbozzetta M et al (2009) Curcumin as a possible lead compound against hormone-independent, multidrug-resistant breast cancer. Ann N Y Acad Sci 1155:278–283PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ramachandran C, You W (1999) Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Res Treat 54(3):269–278PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Onoda M, Inano H (2000) Effect of curcumin on the production of nitric oxide by cultured rat mammary gland. Nitric Oxide 4(5):505–515PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hayden MS, Ghosh S (2012) NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26(3):203–234PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Karin M (2009) NF-κB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1(5):a000141PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Karin M et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Karin M (1999) How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 18(49):6867–6874PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Dhawan P, Richmond A (2002) A novel NF-kappa B-inducing kinase-MAPK signaling pathway up-regulates NF-kappa B activity in melanoma cells. J Biol Chem 277(10):7920–7928PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Marin YE et al (2007) Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res 17(5):274–283PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Collett GP, Campbell FC (2004) Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 25(11):2183–2189PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sun Z, Andersson R (2002) NF-kappaB activation and inhibition: a review. Shock 18(2):99–106PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Collett GP, Campbell FC (2006) Overexpression of p65/RelA potentiates curcumin-induced apoptosis in HCT116 human colon cancer cells. Carcinogenesis 27(6):1285–1291PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Baeuerle PA (1991) The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta 1072(1):63–80PubMedPubMedCentralGoogle Scholar
  37. 37.
    Naumann M et al (1997) Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor κB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med 186(2):247–258PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270(42):24995–25000PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Finco TS, Beg AA, Baldwin AS (1994) Inducible phosphorylation of I kappa B alpha is not sufficient for its dissociation from NF-kappa B and is inhibited by protease inhibitors. Proc Natl Acad Sci U S A 91(25):11884–11888PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Shostak K, Chariot A (2011) NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res: BCR 13(4):214–214PubMedCrossRefGoogle Scholar
  41. 41.
    Luedde T, Schwabe RF (2011) NF-kappaB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 8(2):108–118PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Marquardt JU et al (2015) Curcumin effectively inhibits oncogenic NF-kappaB signaling and restrains stemness features in liver cancer. J Hepatol 63(3):661–669PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Anest V et al (2003) A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423(6940):659–663PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kuo HP et al (2013) Epigenetic roles of MLL oncoproteins are dependent on NF-kappaB. Cancer Cell 24(4):423–437PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shaw PH (1996) The role of p53 in cell cycle regulation. Pathol Res Pract 192(7):669–675PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Amaral JD et al (2010) The role of p53 in apoptosis. Discov Med 9(45):145–152PubMedPubMedCentralGoogle Scholar
  47. 47.
    Rivlin N et al (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2(4):466–474PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Meek DW (1999) Mechanisms of switching on p53: a role for covalent modification? Oncogene 18(53):7666–7675PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Choudhuri T et al (2002) Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512(1-3):334–340PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Choudhuri T et al (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280(20):20059–20068PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    He ZY et al (2011) Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Investig 29(3):208–213CrossRefGoogle Scholar
  53. 53.
    Ye M et al (2015) Curcumin promotes apoptosis by activating the p53-miR-192-5p/215-XIAP pathway in non-small cell lung cancer. Cancer Lett 357(1):196–205PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Watson JL et al (2010) Curcumin causes superoxide anion production and p53-independent apoptosis in human colon cancer cells. Cancer Lett 297(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bush JA, Cheung KJ Jr, Li G (2001) Curcumin induces apoptosis in human melanoma cells through a Fas receptor/caspase-8 pathway independent of p53. Exp Cell Res 271(2):305–314PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Han SS et al (1999) Curcumin causes the growth arrest and apoptosis of B cell lymphoma by downregulation of egr-1, c-myc, bcl-XL, NF-kappa B, and p53. Clin Immunol 93(2):152–161PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ramakrishnan SK et al (2014) Expression of targeted ribozyme against telomerase RNA causes altered expression of several other genes in tumor cells. Tumour Biol 35(6):5539–5550PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Chen B et al (2014) Curcumin inhibits proliferation of breast cancer cells through Nrf2-mediated down-regulation of Fen1 expression. J Steroid Biochem Mol Biol 143:11–18PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Balogun E et al (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371(Pt 3):887–895PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Jain A et al (2015) Curcumin inhibits PhIP induced cytotoxicity in breast epithelial cells through multiple molecular targets. Cancer Lett 365(1):122–131PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Shaw JP et al (1988) Identification of a putative regulator of early T cell activation genes. Science 241:202–205. J Immunol, 2010. 185(9): p. 4972–4975PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Durand DB et al (1988) Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol Cell Biol 8(4):1715–1724PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shukla U et al (2009) Tyrosine phosphorylation of 3BP2 regulates B cell receptor-mediated activation of NFAT. J Biol Chem 284(49):33719–33728PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zanoni I et al (2009) CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460(7252):264–268PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ranger AM et al (2000) The nuclear factor of activated T cells (NFAT) transcription factor NFATp (NFATc2) is a repressor of chondrogenesis. J Exp Med 191(1):9–22PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ho IC et al (1998) A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis. Proc Natl Acad Sci U S A 95(26):15537–15541PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Buchholz M et al (2006) Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 25(15):3714–3724PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Jauliac S et al (2002) The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4(7):540–544PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    de la Pompa JL et al (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392(6672):182–186PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Viola JP et al (2005) NFAT transcription factors: from cell cycle to tumor development. Braz J Med Biol Res 38(3):335–344PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Baksh S, DeCaprio JA, Burakoff SJ (2000) Calcineurin regulation of the mammalian G0/G1 checkpoint element, cyclin dependent kinase 4. Oncogene 19(24):2820–2827PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hernandez GL et al (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193(5):607–620PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5(6):472–484PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Schulz RA, Yutzey KE (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. Dev Biol 266(1):1–16PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Mognol GP et al (2016) Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 7:e2199PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Neuhofer W (2010) Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr Genomics 11(8):584–590PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chueh SC et al (2003) Curcumin enhances the immunosuppressive activity of cyclosporine in rat cardiac allografts and in mixed lymphocyte reactions. Transplant Proc 35(4):1603–1605PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ranjan D et al (2004) Curcumin inhibits mitogen stimulated lymphocyte proliferation, NFkappaB activation, and IL-2 signaling. J Surg Res 121(2):171–177PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kliem C et al (2012) Curcumin suppresses T cell activation by blocking Ca2+ mobilization and nuclear factor of activated T cells (NFAT) activation. J Biol Chem 287(13):10200–10209PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Hernandez M, Wicz S, Corral RS (2016) Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E2 pathway induced during Trypanosoma cruzi infection. Phytomedicine 23(12):1392–1400PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Hai L et al (2011) Counteracting effect of TRPC1-associated Ca2+ influx on TNF-alpha-induced COX-2-dependent prostaglandin E2 production in human colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 301(2):G356–G367PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sai Krishna Borra PG, Mahendra J, Jayamathi KM, Cherian C, chand NaR (2013) Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J Med Plants Res 7(36):2680–2690Google Scholar
  84. 84.
    Wu Y et al (2014) Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett 345(2):164–173PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hamanaka RB, Chandel NS (2011) Cell biology. Warburg effect and redox balance. Science 334(6060):1219–1220PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Giannoni E, Parri M, Chiarugi P (2012) EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal 16(11):1248–1263PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Chattopadhyay D et al (2014) Dichotomous effect of caffeine, curcumin, and naringenin on genomic DNA of normal and diabetic subjects. Scientifica (Cairo) 2014:649261Google Scholar
  89. 89.
    Cai W et al (2012) Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol Appl Pharmacol 262(3):341–348PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wassmann S, Wassmann K, Nickenig G (2004) Modulation of oxidant and antioxidant enzyme expression and function in vascular cells. Hypertension 44(4):381–386PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Leone M et al (1998) Fourier transform infrared analysis of the interaction of azide with the active site of oxidized and reduced bovine Cu, Zn superoxide dismutase. Biochemistry 37(13):4459–4464PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Vance CK, Miller AF (1998) Spectroscopic comparisons of the pH dependencies of Fe-substituted (Mn)superoxide dismutase and Fe-superoxide dismutase. Biochemistry 37(16):5518–5527PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Monari M et al (2006) Superoxide dismutase in gastric adenocarcinoma: is it a clinical biomarker in the development of cancer? Biomarkers 11(6):574–584PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Martin RC et al (2007) Chemoprevention of carcinogenic progression to esophageal adenocarcinoma by the manganese superoxide dismutase supplementation. Clin Cancer Res 13(17):5176–5182PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Fu TY et al (2011) Manganese superoxide dismutase and glutathione peroxidase as prognostic markers in patients with buccal mucosal squamous cell carcinomas. Head Neck 33(11):1606–1615PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Teoh-Fitzgerald ML et al (2012) Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis. Mol Cancer Res 10(1):40–51PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Huang F et al (2014) Targeting gene-virus-mediated manganese superoxide dismutase effectively suppresses tumor growth in hepatocellular carcinoma in vitro and in vivo. Cancer Biother Radiopharm 29(10):403–411PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Tarhini AA et al (2011) A phase I study of concurrent chemotherapy (paclitaxel and carboplatin) and thoracic radiotherapy with swallowed manganese superoxide dismutase plasmid liposome protection in patients with locally advanced stage III non-small-cell lung cancer. Hum Gene Ther 22(3):336–342PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Govatati S et al (2016) Manganese-superoxide dismutase (Mn-SOD) overexpression is a common event in colorectal cancers with mitochondrial microsatellite instability. Tumour Biol 37(8):10357–10364PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zhong W et al (1996) Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 7(9):1175–1186PubMedPubMedCentralGoogle Scholar
  101. 101.
    Schiffman SC, Li Y, Martin RC (2012) The association of manganese superoxide dismutase expression in Barrett’s esophageal progression with MnTBAP and curcumin oil therapy. J Surg Res 176(2):535–541PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Li Y et al (2009) Chemoprotective effects of Curcuma aromatica on esophageal carcinogenesis. Ann Surg Oncol 16(2):515–523PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Calaf GM et al (2011) Protective role of curcumin in oxidative stress of breast cells. Oncol Rep 26(4):1029–1035PubMedPubMedCentralGoogle Scholar
  104. 104.
    Das L, Vinayak M (2014) Long term effect of curcumin in regulation of glycolytic pathway and angiogenesis via modulation of stress activated genes in prevention of cancer. PLoS One 9(6):e99583PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Margis R et al (2008) Glutathione peroxidase family – an evolutionary overview. FEBS J 275(15):3959–3970PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Kryukov GV et al (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830(5):3289–3303PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tappel AL (1978) Glutathione peroxidase and hydroperoxides. Methods Enzymol 52:506–513PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ghyselinck NB, Dufaure JP (1990) A mouse cDNA sequence for epididymal androgen-regulated proteins related to glutathione peroxidase. Nucleic Acids Res 18(23):7144PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Scibior D, Czeczot H (2006) Catalase: structure, properties, functions. Postepy Hig Med Dosw (Online) 60:170–180Google Scholar
  111. 111.
    Fang J, Nakamura H, Iyer AK (2007) Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 15(7-8):475–486PubMedCrossRefGoogle Scholar
  112. 112.
    Sato K et al (1992) Negative regulation of catalase gene expression in hepatoma cells. Mol Cell Biol 12(6):2525–2533PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Kwei KA et al (2004) Transcriptional repression of catalase in mouse skin tumor progression. Neoplasia 6(5):440–448PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Sun Y, Colburn NH, Oberley LW (1993) Depression of catalase gene expression after immortalization and transformation of mouse liver cells. Carcinogenesis 14(8):1505–1510PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Hoffschir F et al (1993) Decrease in catalase activity and loss of the 11p chromosome arm in the course of SV40 transformation of human fibroblasts. Carcinogenesis 14(8):1569–1572PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Xu H et al (2005) Concentration-dependent collateral sensitivity of cisplatin-resistant gastric cancer cell sublines. Biochem Biophys Res Commun 328(2):618–622PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Lee HC et al (2004) Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int J Mol Med 13(6):883–887PubMedPubMedCentralGoogle Scholar
  118. 118.
    Kobayashi Y et al (2008) Hydrogen peroxide-mediated nuclear factor kappaB activation in both liver and tumor cells during initial stages of hepatic metastasis. Cancer Sci 99(8):1546–1552PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Vina J et al (1996) Exercise causes blood glutathione oxidation in chronic obstructive pulmonary disease: prevention by O2 therapy. J Appl Physiol (1985) 81(5):2198–2202CrossRefGoogle Scholar
  120. 120.
    Das L, Vinayak M (2012) Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-kappaB signalling in lymphoma-bearing mice. Biosci Rep 32(2):161–170PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Biswas J et al (2010) Indian spice curcumin may be an effective strategy to combat the genotoxicity of arsenic in Swiss albino mice. Asian Pac J Cancer Prev 11(1):239–247PubMedPubMedCentralGoogle Scholar
  122. 122.
    Safe S, Kasiappan R (2016) Natural products as mechanism-based anticancer agents: Sp transcription factors as targets. Phytother Res 30(11):1723–1732PubMedCrossRefGoogle Scholar
  123. 123.
    Rodrigues LR et al (2007) The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomark Prev 16(6):1087–1097CrossRefGoogle Scholar
  124. 124.
    Kasi PD et al (2016) Molecular targets of curcumin for cancer therapy: an updated review. Tumour Biol 37(10):13017–13028PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Jain S et al (2007) Osteopontin: an emerging therapeutic target for anticancer therapy. Expert Opin Ther Targets 11(1):81–90PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Chakraborty G, Jain S, Kundu GC (2008) Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res 68(1):152–161PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Philip S, Kundu GC (2003) Osteopontin induces nuclear factor kappa B-mediated promatrix metalloproteinase-2 activation through I kappa B alpha/IKK signaling pathways, and curcumin (diferulolylmethane) down-regulates these pathways. J Biol Chem 278(16):14487–14497PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Chakraborty G et al (2008) Curcumin suppresses breast tumor angiogenesis by abrogating osteopontin-induced VEGF expression. Mol Med Rep 1(5):641–646PubMedPubMedCentralGoogle Scholar
  129. 129.
    Arbiser JL et al (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376–383PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gururaj AE et al (2002) Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun 297(4):934–942PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Perry MC et al (2010) Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res 54(8):1192–1201PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ponzo MG et al (2009) Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A 106(31):12903–12908PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Heideman DA et al (2004) Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4. J Gene Med 6(3):317–327PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Zou HY et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67(9):4408–4417PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Jiao D et al (2016) Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics 3:16018PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zhang YW et al (2003) Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A 100(22):12718–12723PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Bimonte S et al (2013) Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer. Biomed Res Int 2013:810423PubMedPubMedCentralGoogle Scholar
  138. 138.
    Chen WH, Chen Y, Cui GH (2005) Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chin Med J 118(24):2052–2057PubMedPubMedCentralGoogle Scholar
  139. 139.
    Millanta F et al (2006) COX-2 expression in canine and feline invasive mammary carcinomas: correlation with clinicopathological features and prognostic molecular markers. Breast Cancer Res Treat 98(1):115–120PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Yoysungnoen P et al (2006) Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 34(1-2):109–115PubMedGoogle Scholar
  141. 141.
    Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104(6):1322–1331PubMedCrossRefGoogle Scholar
  142. 142.
    Bimonte S et al (2015) Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. Biomed Res Int 2015:878134PubMedPubMedCentralGoogle Scholar
  143. 143.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Jeong JW et al (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111(5):709–720PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Bae MK et al (2006) Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol Rep 15(6):1557–1562PubMedPubMedCentralGoogle Scholar
  147. 147.
    Ogawa H et al (2003) Sodium butyrate inhibits angiogenesis of human intestinal microvascular endothelial cells through COX-2 inhibition. FEBS Lett 554(1-2):88–94PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Binion DG, Otterson MF, Rafiee P (2008) Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57(11):1509–1517PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Rossig L et al (2002) Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 91(9):837–844PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Yamada N et al (2014) Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. Biochim Biophys Acta 1839(11):1256–1272PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Katsushima K et al (2012) Contribution of microRNA-1275 to Claudin11 protein suppression via a polycomb-mediated silencing mechanism in human glioma stem-like cells. J Biol Chem 287(33):27396–27406PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bai Y et al (2016) Curcumin inhibits angiogenesis by up-regulation of microRNA-1275 and microRNA-1246: a promising therapy for treatment of corneal neovascularization. Cell Prolif 49(6):751–762PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Fan Y, Mao R, Yang J (2013) NF-kappaB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 4(3):176–185PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6(3):203–208PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Shishodia S (2013) Molecular mechanisms of curcumin action: gene expression. Biofactors 39(1):37–55PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269(2):199–225PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Bachmeier BE et al (2008) Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 29(4):779–789PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Killian PH et al (2012) Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and -2. Carcinogenesis 33(12):2507–2519PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Jacobs MD, Harrison SC (1998) Structure of an IkappaBalpha/NF-kappaB complex. Cell 95(6):749–758PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Verma IM et al (1995) Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev 9(22):2723–2735PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Zong H et al (2012) Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol Biol Rep 39(4):4803–4808PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Huang S (2007) Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res 13(5):1362–1366PubMedCrossRefGoogle Scholar
  163. 163.
    Yang CL et al (2012) Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One 7(5):e37960PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Bharti AC, Donato N, Aggarwal BB (2003) Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171(7):3863–3871PubMedCrossRefGoogle Scholar
  165. 165.
    Strieter RM et al (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270(45):27348–27357PubMedCrossRefGoogle Scholar
  166. 166.
    Youngs SJ et al (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71(2):257–266PubMedCrossRefGoogle Scholar
  167. 167.
    Helbig G et al (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24):21631–21638PubMedCrossRefGoogle Scholar
  168. 168.
    Brooks SA et al (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25PubMedCrossRefGoogle Scholar
  169. 169.
    Tong W et al (2016) Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF–κB, uPA activator and MMP9. Oncol Lett 12(5):4139–4146PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Chirco R et al (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25(1):99–113PubMedCrossRefGoogle Scholar
  171. 171.
    Mylona E et al (2006) Expression of tissue inhibitor of matrix metalloproteinases (TIMP)-3 protein in invasive breast carcinoma: relation to tumor phenotype and clinical outcome. Breast Cancer Res 8(5):R57PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107(3):241–246PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Lin SS et al (2009) Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett 285(2):127–133PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Chen QY et al (2014) Curcumin inhibits lung cancer cell migration and invasion through Rac1-dependent signaling pathway. J Nutr Biochem 25(2):177–185PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Sun K et al (2016) Curcumin inhibits LPA-induced invasion by attenuating RhoA/ROCK/MMPs pathway in MCF7 breast cancer cells. Clin Exp Med 16(1):37–47PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Kim JM et al (2012) Curcumin suppresses the TPA-induced invasion through inhibition of PKCalpha-dependent MMP-expression in MCF-7 human breast cancer cells. Phytomedicine 19(12):1085–1092PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Lee SO et al (2008) Suppression of PMA-induced tumor cell invasion by capillarisin via the inhibition of NF-kappaB-dependent MMP-9 expression. Biochem Biophys Res Commun 366(4):1019–1024PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Shao ZM et al (2002) Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer 98(2):234–240PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Cowin P, Welch DR (2007) Breast cancer progression: controversies and consensus in the molecular mechanisms of metastasis and EMT. J Mammary Gland Biol Neoplasia 12(2-3):99–102PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Gallardo M, Calaf GM (2016) Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines. Int J Oncol 49(3):1019–1027PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Chen MC et al (2012) Resveratrol inhibits LPS-induced epithelial-mesenchymal transition in mouse melanoma model. Innate Immun 18(5):685–693PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Huang T, Chen Z, Fang L (2013) Curcumin inhibits LPS-induced EMT through downregulation of NF-kappaB-Snail signaling in breast cancer cells. Oncol Rep 29(1):117–124PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Chen WC et al (2013) Curcumin suppresses doxorubicin-induced epithelial-mesenchymal transition via the inhibition of TGF-beta and PI3K/AKT signaling pathways in triple-negative breast cancer cells. J Agric Food Chem 61(48):11817–11824PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386CrossRefGoogle Scholar
  185. 185.
    Palumbo MO et al (2013) Systemic cancer therapy: achievements and challenges that lie ahead. Front Pharmacol 4:57PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Mishra J et al (2013) Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit Rev Oncol Hematol 86(3):232–250PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Zhang L et al (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392PubMedPubMedCentralGoogle Scholar
  190. 190.
    Lee WH et al (2014) Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv 11(8):1183–1201PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Logsdon CD, Abbruzzese JL (2010) Chemoprevention of pancreatic cancer: ready for the clinic? Cancer Prev Res (Phila) 3(11):1375–1378CrossRefGoogle Scholar
  193. 193.
    Cirmi S et al (2016) Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives? Nutrients 8(11):698PubMedCentralCrossRefGoogle Scholar
  194. 194.
    Cheng KW et al (2013) Curcumin enhances the lung cancer chemopreventive efficacy of phospho-sulindac by improving its pharmacokinetics. Int J Oncol 43(3):895–902PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Sutaria D et al (2012) Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int J Oncol 41(6):2260–2268PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Nasr M et al (2014) Targeting different angiogenic pathways with combination of curcumin, leflunomide and perindopril inhibits diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharmacol 723:267–275PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Xu G et al (2010) Combination of curcumin and green tea catechins prevents dimethylhydrazine-induced colon carcinogenesis. Food Chem Toxicol 48(1):390–395PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Khafif A et al (1998) Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19(3):419–424PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Montgomery A et al (2016) Curcumin sensitizes Silymarin to exert synergistic anticancer activity in colon cancer cells. J Cancer 7(10):1250–1257PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Feng S-S, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58(18):4087–4114CrossRefGoogle Scholar
  201. 201.
    Chuang SE et al (2000) Curcumin-containing diet inhibits diethylnitrosamine-induced murine hepatocarcinogenesis. Carcinogenesis 21(2):331–335PubMedCrossRefGoogle Scholar
  202. 202.
    Guo S et al (2016) A nanoparticulate pre-chemosensitizer for efficacious chemotherapy of multidrug resistant breast cancer. Sci Rep 6:21459PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Zhao X et al (2015) Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharm Biopharm 93:27–36PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Chen H et al (2016) Synergistic effect of fenretinide and curcumin for treatment of non-small cell lung cancer. Cancer Biol Ther 17:1–8CrossRefGoogle Scholar
  205. 205.
    Yin H et al (2014) Curcumin sensitizes glioblastoma to temozolomide by simultaneously generating ROS and disrupting AKT/mTOR signaling. Oncol Rep 32(4):1610–1616PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Kang JH et al (2015) Curcumin sensitizes human lung cancer cells to apoptosis and metastasis synergistically combined with carboplatin. Exp Biol Med (Maywood) 240(11):1416–1425CrossRefGoogle Scholar
  207. 207.
    Zoller F et al (2009) Endoradiotherapy in cancer treatment—basic concepts and future trends. Eur J Pharmacol 625(1–3):55–62PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    DeNardo SJ, Denardo GL (2006) Targeted radionuclide therapy for solid tumors: an overview. Int J Radiat Oncol Biol Phys 66(2 Suppl):S89–S95PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Zhao J, Zhou M, Li C (2016) Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol 7(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Verma V (2016) Relationship and interactions of curcumin with radiation therapy. World J Clin Oncol 7(3):275–283PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Luthra PM, Lal N (2016) Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma. Eur J Med Chem 109:23–35PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Fan H et al (2016) MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1. Oncol Lett 11(6):3729–3734PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Hsu F-T et al (2015) Curcumin sensitizes hepatocellular carcinoma cells to radiation via suppression of radiation-induced NF-κB activity. Biomed Res Int 2015:7Google Scholar
  214. 214.
    Sebastia N et al (2014) Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay. Mutat Res 766-767:49–55PubMedCrossRefGoogle Scholar
  215. 215.
    Lopez-Jornet P et al (2016) Radioprotective effects of lycopene and curcumin during local irradiation of parotid glands in Sprague Dawley rats. Br J Oral Maxillofac Surg 54(3):275–279PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Fukuda K et al (2016) A diarylpentanoid curcumin analog exhibits improved radioprotective potential in the intestinal mucosa. Int J Radiat Biol 92(7):388–394PubMedCrossRefGoogle Scholar
  217. 217.
    Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41(13):1955–1968PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Eigner D, Scholz D (1999) Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67(1):1–6PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Johnson JJ, Mukhtar H (2007) Curcumin for chemoprevention of colon cancer. Cancer Lett 255(2):170–181PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Hsu CH, Cheng AL (2007) Clinical studies with curcumin. Adv Exp Med Biol 595:471–480PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Sharma RA et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Mahammedi H et al (2016) The new combination Docetaxel, Prednisone and Curcumin in patients with castration-resistant prostate cancer: a pilot phase II study. Oncology 90(2):69–78PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Basu P et al (2013) Clearance of cervical human papillomavirus infection by topical application of curcumin and curcumin containing polyherbal cream: a phase II randomized controlled study. Asian Pac J Cancer Prev 14(10):5753–5759PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Bayet-Robert M et al (2010) Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer. Cancer Biol Ther 9(1):8–14PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Irving GR et al (2013) Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration–a clinical pilot study including assessment of patient acceptability. Cancer Prev Res (Phila) 6(2):119–128CrossRefGoogle Scholar
  226. 226.
    Chen WT et al (2014) Effectiveness of a novel herbal agent MB-6 as a potential adjunct to 5-fluoracil-based chemotherapy in colorectal cancer. Nutr Res 34(7):585–594PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Sharma RA et al (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7(7):1894–1900PubMedPubMedCentralGoogle Scholar
  228. 228.
    Dhillon N et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14(14):4491–4499PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Kanai M et al (2011) A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68(1):157–164PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Epelbaum R et al (2010) Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer 62(8):1137–1141PubMedCrossRefGoogle Scholar
  231. 231.
    Ghalaut VS et al (2012) Effect of imatinib therapy with and without turmeric powder on nitric oxide levels in chronic myeloid leukemia. J Oncol Pharm Pract 18(2):186–190PubMedCrossRefGoogle Scholar
  232. 232.
    Irving GR et al (2015) Combining curcumin (C3-complex, Sabinsa) with standard care FOLFOX chemotherapy in patients with inoperable colorectal cancer (CUFOX): study protocol for a randomised control trial. Trials 16:110PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    James MI et al (2015) Curcumin inhibits cancer stem cell phenotypes in ex vivo models of colorectal liver metastases, and is clinically safe and tolerable in combination with FOLFOX chemotherapy. Cancer Lett 364(2):135–141PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Panahi Y et al (2014) Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res 28(10):1461–1467PubMedCrossRefGoogle Scholar
  235. 235.
    Ryan JL et al (2013) Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res 180(1):34–43PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Kanai M (2014) Therapeutic applications of curcumin for patients with pancreatic cancer. World J Gastroenterol 20(28):9384–9391PubMedPubMedCentralGoogle Scholar
  237. 237.
    Golombick T et al (2012) Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am J Hematol 87(5):455–460PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Carroll RE et al (2011) Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila) 4(3):354–364CrossRefGoogle Scholar
  239. 239.
    Ide H et al (2010) Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 70(10):1127–1133PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Golombick T et al (2009) The potential role of curcumin in patients with monoclonal gammopathy of undefined significance–its effect on paraproteinemia and the urinary N-telopeptide of type I collagen bone turnover marker. Clin Cancer Res 15(18):5917–5922PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Akash Sabarwal
    • 1
  • Kunal Kumar
    • 1
  • Ritis Shyanti
    • 1
  • Rana P. Singh
    • 2
  1. 1.School of Life SciencesCentral University of GujaratGandhinagarIndia
  2. 2.Cancer Biology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations