Advertisement

Phytochemicals and Human Health

  • Krishnendu Sinha
  • Sayantani Chowdhury
  • Parames C. Sil
Chapter

Abstract

The World Health Organization (WHO) defined health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.” Any disturbance in this well-being leads to ill-health and a related condition called pathophysiology. Disease conditions, xenobiotics, and environmental and social stresses are the most common causes behind these pathophysiological conditions, and this can be generalized from recent studies that in most of the cases ROS plays the pivotal role as the main effector. However, fortunately in many cases, these health problems are preventable. Reasonable cost, presence in the daily consumables, and negligible side effects make the naturally occurring plant-derived compounds interesting and attractive for pharmacological study in recent years. Primarily for the defense purpose, plants yield assorted types of low-molecular-weight products. These are generally termed as phytochemicals. Among them, a group of secondary metabolites associated with a polyphenolic group have been named flavonoids and are of pronounced interest due to their implausible pharmacological properties. Flavonoids are widely accepted as potent antioxidant agents which can prevent injury caused by free radicals by scavenging of ROS, activation of antioxidant enzymes, and inhibiting oxidases. In addition, increase in antioxidant properties of low-molecular antioxidants, metal chelating activity, and reduction of α-tocopheryl radicals and mitigation of oxidative stress caused by NO also plays important role. In this chapter, we have summarized most of the findings, if not all, available till date related to five very noticeable phytochemicals, namely, morin, quercetin, rutin, mangiferin, and myricetin. Hope this chapter will help readers in understanding the utmost importance of the phytochemicals and will motivate them to further dig into the mechanistic study to fetch more novel information.

Keywords

Phytochemicals Morin Quercetin Rutin Mangiferin Myricetin 

References

  1. 1.
    Sinha K, Sadhukhan P, Saha S, Pal PB, Sil PC (2015) Morin protects gastric mucosa from nonsteroidal anti-inflammatory drug, indomethacin induced inflammatory damage and apoptosis by modulating NF-kappaB pathway. Biochim Biophys Acta 1850:769–783PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Basile A, Sorbo S, Giordano S, Ricciardi L, Ferrara S, Montesano D, Castaldo Cobianchi R, Vuotto ML, Ferrara L (2000) Antibacterial and allelopathic activity of extract from Castanea sativa leaves. Fitoterapia 71(Suppl 1):S110–S116PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sinha K, Ghosh J, Sil PC (2016) Morin and its role in chronic diseases. Adv Exp Med Biol 928:453–471PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gottlieb M, Leal-Campanario R, Campos-Esparza MR, Sanchez-Gomez MV, Alberdi E, Arranz A, Delgado-Garcia JM, Gruart A, Matute C (2006) Neuroprotection by two polyphenols following excitotoxicity and experimental ischemia. Neurobiol Dis 23:374–386PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zeng N, Tong B, Zhang X, Dou Y, Wu X, Xia Y, Dai Y, Wei Z (2015) Antiarthritis effect of morin is associated with inhibition of synovial angiogensis. Drug Dev Res 76(8):463–473PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Subash S, Subramanian P (2012) Chronotherapeutic effect of morin in experimental chronic hyperammonemic rats. Int J Nutr Pharmacol Neurol Dis 2:266CrossRefGoogle Scholar
  7. 7.
    Amo-Barimah A, Woode E, Boakye-Gyasi E, Ainooson G, Abotsi W (2010) Antiarthritic and antioxidant effects of the leaf extract of Ficus exasperata P. Beauv (Moraceae). Pharm Res 2:89.  https://doi.org/10.4103/0974-8490.62958 CrossRefGoogle Scholar
  8. 8.
    Sultana F, Rasool M (2015) A novel therapeutic approach targeting rheumatoid arthritis by combined administration of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin with reference to pro-inflammatory cytokines, inflammatory enzymes, RANKL and transcription factors. Chem Biol Interact 230:58–70PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Galvez J, Coelho G, Crespo ME, Cruz T, Rodriguez-Cabezas ME, Concha A, Gonzalez M, Zarzuelo A (2001) Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Aliment Pharmacol Ther 15:2027–2039PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hogaboam CM, Jacobson K, Collins SM, Blennerhassett MG (1995) The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Phys 268:G673–G684Google Scholar
  11. 11.
    Al-Numair KS, Chandramohan G, Alsaif MA (2012) Pretreatment with morin, a flavonoid, ameliorates adenosine triphosphatases and glycoproteins in isoproterenol-induced myocardial infarction in rats. J Nat Med 66:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Prahalathan P, Kumar S, Raja B (2012) Effect of morin, a flavonoid against DOCA-salt hypertensive rats: a dose dependent study. Asian Pac J Trop Biomed 2:443–448PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Noor H, Cao P, Raleigh DP (2012) Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Protein Sci 21:373–382PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Vanitha P, Uma C, Suganya N, Bhakkiyalakshmi E, Suriyanarayanan S, Gunasekaran P, Sivasubramanian S, Ramkumar K (2014) Modulatory effects of morin on hyperglycemia by attenuating the hepatic key enzymes of carbohydrate metabolism and β-cell function in streptozotocin-induced diabetic rats. Environ Toxicol Pharmacol 37:326–335PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Abuohashish HM, Al-Rejaie SS, Al-Hosaini KA, Parmar MY, Ahmed MM (2013) Alleviating effects of morin against experimentally-induced diabetic osteopenia. Diabetol Metab Syndr 5:5PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kim JM, Lee EK, Park G, Kim MK, Yokozawa T, Yu BP, Chung HY (2010) Morin modulates the oxidative stress-induced NF-kappaB pathway through its anti-oxidant activity. Free Radic Res 44:454–461PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fang SH, Hou YC, Chang WC, Hsiu SL, Chao PD, Chiang BL (2003) Morin sulfates/glucuronides exert anti-inflammatory activity on activated macrophages and decreased the incidence of septic shock. Life Sci 74:743–756PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hsiang CY, Wu SL, Ho TY (2005) Morin inhibits 12-O-tetradecanoylphorbol-13-acetate-induced hepatocellular transformation via activator protein 1 signaling pathway and cell cycle progression. Biochem Pharmacol 69:1603–1611PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kawabata K, Tanaka T, Honjo S, Kakumoto M, Hara A, Makita H, Tatematsu N, Ushida J, Tsuda H, Mori H (1999) Chemopreventive effect of dietary flavonoid morin on chemically induced rat tongue carcinogenesis. Int J Cancer 83:381–386PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Thuillier P, Brash AR, Kehrer JP, Stimmel JB, Leesnitzer LM, Yang P, Newman RA, Fischer SM (2002) Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation by lipoxygenase inhibitors. Biochem J 366:901–910PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kempuraj D, Madhappan B, Christodoulou S, Boucher W, Cao J, Papadopoulou N, Cetrulo CL, Theoharides TC (2005) Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol 145:934–944PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chen YC, Shen SC, Chow JM, Ko CH, Tseng SW (2004) Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol 25:661–670PubMedPubMedCentralGoogle Scholar
  23. 23.
    Gopal JV (2013) Morin hydrate: botanical origin, pharmacological activity and its applications: a mini-review. Pharm J 5:123–126Google Scholar
  24. 24.
    Lakhanpal P, Rai DK (2007) Quercetin: a versatile flavonoid. Internet J Med Updat 2:22–37Google Scholar
  25. 25.
    Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY (2014) Antiartherosclerotic effects of plant flavonoids. Biomed Res Int 2014:480258PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Sultana B, Anwar F (2008) Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem 108:879–884PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10:84–89PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Begum AN, Terao J (2002) Protective effect of quercetin against cigarette tar extract-induced impairment of erythrocyte deformability. J Nutr Biochem 13:265–272PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chun OK, Chung SJ, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J Nutr 138:753–760PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Garcia-Mediavilla V, Crespo I, Collado PS, Esteller A, Sanchez-Campos S, Tunon MJ, Gonzalez-Gallego J (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang liver cells. Eur J Pharmacol 557:221–229PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 56:683–687PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Mamani-Matsuda M, Kauss T, Al-Kharrat A, Rambert J, Fawaz F, Thiolat D, Moynet D, Coves S, Malvy D, Mossalayi MD (2006) Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem Pharmacol 72:1304–1310PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J (2012) The effect of quercetin supplementation on selected markers of inflammation and oxidative stress. J Res Med Sci 17:637–641PubMedPubMedCentralGoogle Scholar
  34. 34.
    Javadi F, Eghtesadi S, Ahmadzadeh A, Aryaeian N, Zabihiyeganeh M, Foroushani AR, Jazayeri S (2014) The effect of quercetin on plasma oxidative status, C-reactive protein and blood pressure in women with rheumatoid arthritis. Int J Prev Med 5:293–301PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ahmad NS, Farman M, Najmi MH, Mian KB, Hasan A (2008) Pharmacological basis for use of Pistacia integerrima leaves in hyperuricemia and gout. J Ethnopharmacol 117:478–482PubMedCrossRefGoogle Scholar
  36. 36.
    Lekakis J, Rallidis LS, Andreadou I, Vamvakou G, Kazantzoglou G, Magiatis P, Skaltsounis AL, Kremastinos DT (2005) Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 12:596–600PubMedGoogle Scholar
  37. 37.
    Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411PubMedCrossRefGoogle Scholar
  38. 38.
    Chopra M, Fitzsimons PE, Strain JJ, Thurnham DI, Howard AN (2000) Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin Chem 46:1162–1170PubMedGoogle Scholar
  39. 39.
    Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Muller MJ (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102:1065–1074PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373:545–549PubMedCrossRefGoogle Scholar
  41. 41.
    Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA (2008) Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 11:773–783PubMedCrossRefGoogle Scholar
  42. 42.
    Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 386:471–478PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82:1032–1039PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Choi GN, Kim JH, Kwak JH, Jeong C-H, Jeong HR, Lee U, Heo HJ (2012) Effect of quercetin on learning and memory performance in ICR mice under neurotoxic trimethyltin exposure. Food Chem 132:1019–1024CrossRefGoogle Scholar
  45. 45.
    Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev J Clin Ther 5:196–208Google Scholar
  46. 46.
    Akan Z, Garip AI (2013) Antioxidants may protect cancer cells from apoptosis signals and enhance cell viability. Asian Pac J Cancer Prev 14:4611–4614PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R, Aparicio-Rautista DI, Villa-Trevino S (2009) Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radic Res 43:128–137PubMedCrossRefGoogle Scholar
  48. 48.
    Cruz-Correa M, Shoskes DA, Sanchez P, Zhao R, Hylind LM, Wexner SD, Giardiello FM (2006) Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol 4:1035–1038PubMedCrossRefGoogle Scholar
  49. 49.
    Han M, Song Y, Zhang X (2016) Quercetin suppresses the migration and invasion in human Colon Cancer Caco-2 cells through regulating toll-like receptor 4/nuclear factor-kappa B pathway. Pharmacogn Mag 12:S237–S244PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pratheeshkumar P, Son YO, Divya SP, Wang L, Turcios L, Roy RV, Hitron JA, Kim D, Dai J, Asha P, Zhang Z, Shi X (2016) Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget 8(32):52118PubMedPubMedCentralGoogle Scholar
  51. 51.
    Yang F, Song L, Wang H, Wang J, Xu Z, Xing N (2015) Quercetin in prostate cancer: chemotherapeutic and chemopreventive effects, mechanisms and clinical application potential (Review). Oncol Rep 33:2659–2668PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Alarcon De La Lastra C, Martin MJ, Motilva V (1994) Antiulcer and gastroprotective effects of quercetin: a gross and histologic study. Pharmacology 48:56–62PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Suzuki Y, Ishihara M, Segami T, Ito M (1998) Anti-ulcer effects of antioxidants, quercetin, alpha-tocopherol, nifedipine and tetracycline in rats. Jpn J Pharmacol 78:435–441PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Coles L (2000) Quercetin: a review of clinical applications. Natural medicine OnlineGoogle Scholar
  55. 55.
    Ferry DR, Smith A, Malkhandi J, Fyfe DW, Detakats PG, Anderson D, Baker J, Kerr DJ (1996) Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 2:659–668PubMedPubMedCentralGoogle Scholar
  56. 56.
    Heinz SA, Henson DA, Austin MD, Jin F, Nieman DC (2010) Quercetin supplementation and upper respiratory tract infection: a randomized community clinical trial. Pharmacol Res 62:237–242PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hosseinzadeh H, Nassiri-Asl M (2014) Review of the protective effects of rutin on the metabolic function as an important dietary flavonoid. J Endocrinol Investig 37:783–788CrossRefGoogle Scholar
  58. 58.
    Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013) Rutin : therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22:1063–1079PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Al-Dhabi NA, Arasu MV, Park CH, Park SU (2015) An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J 14:59–63PubMedPubMedCentralGoogle Scholar
  60. 60.
    Patil SL, Rao NB, Somashekarappa HM, Rajashekhar KP (2014) Antigenotoxic potential of rutin and quercetin in Swiss mice exposed to gamma radiation. Biom J 37:305–313Google Scholar
  61. 61.
    Park SE, Sapkota K, Choi JH, Kim MK, Kim YH, Kim KM, Kim KJ, Oh HN, Kim SJ, Kim S (2014) Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem Res 39:707–718PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hsu CY, Shih HY, Chia YC, Lee CH, Ashida H, Lai YK, Weng CF (2014) Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 58:1168–1176PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Niture NT, Ansari AA, Naik SR (2014) Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: an effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J Exp Biol 52:720–727PubMedPubMedCentralGoogle Scholar
  64. 64.
    Na JY, Kim S, Song K, Kwon J (2014) Rutin alleviates prion peptide-induced cell death through inhibiting apoptotic pathway activation in dopaminergic neuronal cells. Cell Mol Neurobiol 34:1071–1079PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Nieoczym D, Socala K, Raszewski G, Wlaz P (2014) Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 54:50–58CrossRefGoogle Scholar
  66. 66.
    Qu J, Zhou Q, Du Y, Zhang W, Bai M, Zhang Z, Xi Y, Li Z, Miao J (2014) Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion. Br J Pharmacol 171:3702–3715PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ugusman A, Zakaria Z, Chua KH, Nordin NA, Abdullah Mahdy Z (2014) Role of rutin on nitric oxide synthesis in human umbilical vein endothelial cells. ScientificWorldJournal 2014:169370PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Choi KS, Kundu JK, Chun KS, Na HK, Surh YJ (2014) Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets. Arch Biochem Biophys 559:38–45PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sikder K, Kesh SB, Das N, Manna K, Dey S (2014) The high antioxidative power of quercetin (aglycone flavonoid) and its glycone (rutin) avert high cholesterol diet induced hepatotoxicity and inflammation in Swiss albino mice. Food Funct 5:1294–1303PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Rajendran P, Rengarajan T, Nandakumar N, Divya H, Nishigaki I (2015) Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. J Recept Signal Transduct Res 35:76–84PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Yang Z, Weian C, Susu H, Hanmin W (2016) Protective effects of mangiferin on cerebral ischemia-reperfusion injury and its mechanisms. Eur J Pharmacol 771:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Benard O, Chi Y (2015) Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities. Mini-Rev Med Chem 15:582–594PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ghosh S, Banerjee S, Sil PC (2015) The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: a recent update. Food Chem Toxicol 83:111–124PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ghosh M, Das J, Sil PC (2012) D(+) galactosamine induced oxidative and nitrosative stress-mediated renal damage in rats via NF-kappaB and inducible nitric oxide synthase (iNOS) pathways is ameliorated by a polyphenol xanthone, mangiferin. Free Radic Res 46:116–132PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB (2014) Resources and biological activities of natural polyphenols. Nutrients 6:6020–6047PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pal PB, Sinha K, Sil PC (2013) Mangiferin, a natural xanthone, protects murine liver in Pb(II) induced hepatic damage and cell death via MAP kinase, NF-kappaB and mitochondria dependent pathways. PLoS One 8:e56894PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Saha S, Sadhukhan P, Sil PC (2016a) Mangiferin: a xanthonoid with multipotent anti-inflammatory potential. Biofactors 42:459–474PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Selles AJ, Villa DG, Rastrelli L (2015) Mango polyphenols and its protective effects on diseases associated to oxidative stress. Curr Pharm Biotechnol 16:272–280PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Menkovic N, Juranic Z, Stanojkovic T, Raonic-Stevanovic T, Savikin K, Zdunic G, Borojevic N (2010) Radioprotective activity of Gentiana lutea extract and mangiferin. Phytother Res 24:1693–1696PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Sadhukhan P, Saha S, Sil P (2015) Targeting oxidative stress: a novel approach in mitigating cancer. Biochem Anal Biochem 4.  https://doi.org/10.4172/2161-1009.1000236
  81. 81.
    Apontes P, Liu Z, Su K, Benard O, Youn DY, Li X, Li W, Mirza RH, Bastie CC, Jelicks LA, Pessin JE, Muzumdar RH, Sauve AA, Chi Y (2014) Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63:3626–3636PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Marquez L, Garcia-Bueno B, Madrigal JL, Leza JC (2012) Mangiferin decreases inflammation and oxidative damage in rat brain after stress. Eur J Nutr 51:729–739PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Pal PB, Ghosh S, Sil PC (2015) Beneficial effect of naturally occurring antioxidants against oxidative stress–mediated organ dysfunctions. In: Bioactive natural products: chemistry and biology. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  84. 84.
    Lim J, Liu Z, Apontes P, Feng D, Pessin JE, Sauve AA, Angeletti RH, Chi Y (2014) Dual mode action of mangiferin in mouse liver under high fat diet. PLoS One 9:e90137PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Guo F, Huang C, Liao X, Wang Y, He Y, Feng R, Li Y, Sun C (2011) Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res 55:1809–1818PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Xing X, Li D, Chen D, Zhou L, Chonan R, Yamahara J, Wang J, Li Y (2014) Mangiferin treatment inhibits hepatic expression of acyl-coenzyme a:diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver. Toxicol Appl Pharmacol 280:207–215PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Mirza RH, Chi N, Chi Y (2013) Therapeutic potential of the natural product mangiferin in metabolic syndrome. J Nutr Ther 2:74–79Google Scholar
  88. 88.
    Asthana RK, Gupta R, Agrawal N, Srivastava A, Chaturvedi U, Kanojiya S, Khanna AK, Bhatia G, Sharma VL (2014) Evaluation of antidyslipidemic effect of mangiferin and amarogentin from Swertia chirayita extract in HFD induced Charles Foster rat model and in vitro antioxidant activity and their docking studies. Int J Pharm Sci Res 5:3734Google Scholar
  89. 89.
    Saha S, Sadhukhan P, Sinha K, Agarwal N, Sil PC (2016b) Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochem Biophys Rep 5:313–327PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wolfender J-L, Urbain A, Hostettmann K (2015) Profiling, isolation, chemical characterisation and distribution of Gentianaceae constituents. In: The Gentianaceae-volume 2: biotechnology and applications. Springer, Berlin/HeidelbergGoogle Scholar
  91. 91.
    Crockett SL, Poller B, Tabanca N, Pferschy-Wenzig EM, Kunert O, Wedge DE, Bucar F (2011) Bioactive xanthones from the roots of Hypericum perforatum (common St John’s wort). J Sci Food Agric 91:428–434PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Abbaskhan A, Siddiqui H, Anjum S, Orhan I, Gurbuz I, Ayanoglud F (2010) New and known constituents from Iris unguicularis and their antioxidant activity. Heterocycles 82:813–824CrossRefGoogle Scholar
  93. 93.
    Xu L, Li A, Sun A, Liu R (2010) Preparative isolation of neomangiferin and mangiferin from Rhizoma anemarrhenae by high-speed countercurrent chromatography using ionic liquids as a two-phase solvent system modifier. J Sep Sci 33:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Viswanadh EK, Rao BN, Rao BS (2010) Antigenotoxic effect of mangiferin and changes in antioxidant enzyme levels of Swiss albino mice treated with cadmium chloride. Hum Exp Toxicol 29:409–418PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kammalla AK, Ramasamy MK, Inampudi J, Dubey GP, Agrawal A, Kaliappan I (2015) Comparative pharmacokinetic study of mangiferin after oral administration of pure mangiferin and US patented polyherbal formulation to rats. AAPS PharmSciTech 16:250–258PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Wang H, Ye G, Ma CH, Tang YH, Fan MS, Li ZX, Huang CG (2007) Identification and determination of four metabolites of mangiferin in rat urine. J Pharm Biomed Anal 45:793–798PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Rashid K, Sinha K, Sil PC (2013) An update on oxidative stress-mediated organ pathophysiology. Food Chem Toxicol 62:584–600PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sinha K, Pal PB, Sil PC (2013) Mangiferin, a naturally occurring xanthone C-glycoside, ameliorates lead (Pb)-induced murine cardiac injury via mitochondria-dependent apoptotic pathways. Signpost Open Access J Org Biomol Chem 1:47–63Google Scholar
  99. 99.
    Faizi S, Zikr-Ur-Rehman S, Ali M, Naz A (2006) Temperature and solvent dependent NMR studies on mangiferin and complete NMR spectral assignments of its acyl and methyl derivatives. Magn Reson Chem 44:838–844PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Barreto JC, Trevisan MT, Hull WE, Erben G, De Brito ES, Pfundstein B, Wurtele G, Spiegelhalder B, Owen RW (2008) Characterization and quantitation of polyphenolic compounds in bark, kernel, leaves, and peel of mango (Mangifera indica L.). J Agric Food Chem 56:5599–5610PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sekar M (2015) Molecules of interest-mangiferin-a review. Ann Res Rev Biol 5:307CrossRefGoogle Scholar
  102. 102.
    Danthu P, Lubrano C, Flavet L, Rahajanirina V, Behra O, Fromageot C, Rabevohitra R, Roger E (2010) Biological factors influencing production of xanthones in Aphloia theiformis. Chem Biodivers 7:140–150PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Sethiya NK, Mishra S (2014) Investigation of mangiferin, as a promising natural polyphenol xanthone on multiple targets of Alzheimer’s disease. J Biol Act Prod Nat 4:111–119Google Scholar
  104. 104.
    Ahmad A, Padhye S, Sarkar FH (2012) Role of novel nutraceuticals garcinol, plumbagin and mangiferin in the prevention and therapy of human malignancies: mechanisms of anticancer activity. In: Nutraceuticals and cancer. Springer, DordrechtGoogle Scholar
  105. 105.
    Joubert E, Otto F, Grüner S, Weinreich B (2003) Reversed-phase HPLC determination of mangiferin, isomangiferin and hesperidin in Cyclopia and the effect of harvesting date on the phenolic composition of C. genistoides. Eur Food Res Technol 216:270–273CrossRefGoogle Scholar
  106. 106.
    Morel I, Abalea V, Sergent O, Cillard P, Cillard J (1998) Involvement of phenoxyl radical intermediates in lipid antioxidant action of myricetin in iron-treated rat hepatocyte culture. Biochem Pharmacol 55:1399–1404PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Sahu SC, Gray GC (1993) Interactions of flavonoids, trace metals, and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett 70:73–79PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Chen W, Li Y, Li J, Han Q, Ye L, Li A (2011) Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem Toxicol 49:2439–2444PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Henneberg R, Otuki MF, Furman AE, Hermann P, Do Nascimento AJ, Leonart MS (2013) Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea. Rev Bras Hematol Hemoter 35:52–55PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: a dietary molecule with diverse biological activities. Nutrients 8:90PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Xinhuai Z, Xin Z (2009) Comparisons of cytoprotective effects of three flavonoids against human hepatocytes oxidative injury induced by hydrogen peroxide or carbon tetrachloride in vitro. J Med Plant Res 3:776–784Google Scholar
  113. 113.
    Laughton MJ, Halliwell B, Evans PJ, Hoult JR (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin. Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38:2859–2865PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Pandey KB, Mishra N, Rizvi SI (2009) Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Naturforsch C 64:626–630PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Xie H-J, Mou W-S, Lin F-R, Xu J-H, Lei Q-F (2013) Radical scavenging activity of myricetin. Acta Phys -Chim Sin 29:1421–1432Google Scholar
  116. 116.
    Mira L, Fernandez MT, Santos M, Rocha R, Florencio MH, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Justino GC, Vieira AJ (2010) Antioxidant mechanisms of Quercetin and Myricetin in the gas phase and in solution--a comparison and validation of semi-empirical methods. J Mol Model 16:863–876PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Romanouskaya TV, Grinev VV (2009) Cytotoxic effect of flavonoids on leukemia cells and normal cells of human blood. Bull Exp Biol Med 148:57–59PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Oyama Y, Fuchs PA, Katayama N, Noda K (1994) Myricetin and quercetin, the flavonoid constituents of Ginkgo biloba extract, greatly reduce oxidative metabolism in both resting and Ca(2+)-loaded brain neurons. Brain Res 635:125–129PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Lopez-Lazaro M, Willmore E, Austin CA (2010) The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res 696:41–47PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J Nat Prod 58:217–225PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kang NJ, Jung SK, Lee KW, Lee HJ (2011) Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci 1229:124–132PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kumamoto T, Fujii M, Hou DX (2009) Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 275:17–26PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Ichimatsu D, Nomura M, Nakamura S, Moritani S, Yokogawa K, Kobayashi S, Nishioka T, Miyamoto K (2007) Structure-activity relationship of flavonoids for inhibition of epidermal growth factor-induced transformation of JB6 Cl 41 cells. Mol Carcinog 46:436–445PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Xu R, Zhang Y, Ye X, Xue S, Shi J, Pan J, Chen Q (2013) Inhibition effects and induction of apoptosis of flavonoids on the prostate cancer cell line PC-3 in vitro. Food Chem 138:48–53PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Sun F, Zheng XY, Ye J, Wu TT, Wang J, Chen W (2012) Potential anticancer activity of myricetin in human T24 bladder cancer cells both in vitro and in vivo. Nutr Cancer 64:599–606PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Zhang ZT, Cao XB, Xiong N, Wang HC, Huang JS, Sun SG, Wang T (2010) Morin exerts neuroprotective actions in parkinson disease models in vitro and in vivo. Acta Pharmacol Sin 31(8):900–906PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Benavente-Garcia O, Castillo J, Lorente J, Alcaraz M, Yanez I, Martinez C, Vicente V, Lozano J (2005) Antiproliferative activity of several phenolic compounds against melanoma cell lines: relationship between structure and activity. Agro Food Ind Hi Tech 16:30–34Google Scholar
  129. 129.
    Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6:909–919PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Labbe D, Provencal M, Lamy S, Boivin D, Gingras D, Beliveau R (2009) The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 139:646–652PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Shih YW, Wu PF, Lee YC, Shi MD, Chiang TA (2009) Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: possible mediation by blocking the ERK signaling pathway. J Agric Food Chem 57:3490–3499PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Kim ME, Ha TK, Yoon JH, Lee JS (2014) Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res 34:701–706PubMedPubMedCentralGoogle Scholar
  133. 133.
    Schutte ME, Van De Sandt JJ, Alink GM, Groten JP, Rietjens IM (2006) Myricetin stimulates the absorption of the pro-carcinogen PhIP. Cancer Lett 231:36–42PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Borde P, Mohan M, Kasture S (2011) Effect of myricetin on deoxycorticosterone acetate (DOCA)-salt-hypertensive rats. Nat Prod Res 25:1549–1559PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Godse S, Mohan M, Kasture V, Kasture S (2010) Effect of myricetin on blood pressure and metabolic alterations in fructose hypertensive rats. Pharm Biol 48:494–498PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Kang BY, Kim SH, Cho D, Kim TS (2005) Inhibition of interleukin-12 production in mouse macrophages via decreased nuclear factor-kappaB DNA binding activity by myricetin, a naturally occurring flavonoid. Arch Pharm Res 28:274–279PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Jimenez R, Andriambeloson E, Duarte J, Andriantsitohaina R, Jimenez J, Perez-Vizcaino F, Zarzuelo A, Tamargo J (1999) Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta. Br J Pharmacol 127:1539–1544PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Cho YC, Yoon G, Lee KY, Choi HJ, Kang BY (2007) Inhibition of interleukin-2 production by myricetin in mouse EL-4 T cells. Arch Pharm Res 30:1075–1079PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Ong KC, Khoo HE (1996) Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation. Biochem Pharmacol 51:423–429PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Ong KC, Khoo HE (2000) Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci 67:1695–1705PubMedCrossRefGoogle Scholar
  141. 141.
    Zelus C, Fox A, Calciano A, Faridian BS, Nogaj LA, Moffet DA (2012) Myricetin inhibits islet amyloid polypeptide (IAPP) aggregation and rescues living mammalian cells from IAPP toxicity. Open Biochem J 6:66–70PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Tzeng TF, Liou SS, Liu IM (2011) Myricetin ameliorates defective post-receptor insulin signaling via beta-endorphin signaling in the skeletal muscles of fructose-fed rats. Evid Based Complement Alternat Med 2011:150752PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Liu IM, Tzeng TF, Liou SS, Lan TW (2007) Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus. Planta Med 73:1054–1060PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Ozcan F, Ozmen A, Akkaya B, Aliciguzel Y, Aslan M (2012) Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin Exp Med 12:265–272PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Gebhardt R (2003) Variable influence of kaempferol and myricetin on in vitro hepatocellular cholesterol biosynthesis. Planta Med 69:1071–1074PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Chang CJ, Tzeng TF, Liou SS, Chang YS, Liu IM (2012) Myricetin increases hepatic peroxisome proliferator-activated receptor alpha protein expression and decreases plasma lipids and adiposity in rats. Evid Based Complement Alternat Med 2012:787152PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Krishnendu Sinha
    • 1
    • 2
  • Sayantani Chowdhury
    • 2
  • Parames C. Sil
    • 2
  1. 1.Department of ZoologyJhargram Raj CollegeJhargramIndia
  2. 2.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations