Advertisement

Epidemiology of Crohn’s Disease in Japan

  • Koji Uchiyama
  • Mitsumasa Umesawa
  • Yasuo Haruyama
  • Toshimi Sairenchi
  • Gen Kobashi
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

Crohn’s disease (CD) is a chronic inflammatory condition of the gastrointestinal tract that most commonly affects the small intestine and colon. Recent data indicate a growing incidence and prevalence of CD worldwide, and CD has become more common in Japan. This report aimed to review the epidemiology of CD in Japan. Japanese genome-wide association studies on CD revealed important race-specific results, such as lack of association with the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) locus. Moreover, CD has been considered a multifactorial disease of both genetic and environmental etiology. Therefore, studies on environmental factors and gene–environment interaction analyses are warranted in Japan.

Keywords

Crohn’s disease Epidemiological studies Genetic factors Environmental factors Westernization Elemental diets Pregnancy outcome Japanese 

References

  1. 1.
    Ng WK, Wong SH, Ng SC. Changing epidemiological trends of inflammatory bowel disease in Asia. Intest Res. 2016;14:111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ishige T, Tomomasa T, Takebayashi T, Asakura K, Watanabe M, Suzuki T, et al. Inflammatory bowel disease in children: epidemiological analysis of the nationwide IBD registry in Japan. J Gastroenterol. 2010;45:911–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Ministry of Health, Labour and Welfare: Health and medical services. http://www.mhlw.go.jp/english/wp/wp-hw8/dl/02e.pdf (2014). Accessed 31 Oct 2017.
  4. 4.
    Portal site of official statistics of Japan. http://www.e-stat.go.jp/SG1/estat/NewList.do?tid=000001031469. Accessed 6 Nov 2017.
  5. 5.
    Morita N, Toki S, Hirohashi T, Minoda T, Ogawa K, Kono S, et al. Incidence and prevalence of inflammatory bowel disease in Japan: nationwide epidemiological survey during the year 1991. J Gastroenterol. 1991;30(Suppl 8):1–4.Google Scholar
  6. 6.
    Kanatani Y, Tomita N, Sato Y, Eto A, Omoe H, Mizushima H. National registry of designated intractable diseases in Japan: present status and future prospects. Neurol Med Chir (Tokyo). 2017;57:1–7.CrossRefGoogle Scholar
  7. 7.
    Takeuchi M, Tomomasa T, Yasunaga H, Horiguchi H, Fushimi K. Descriptive epidemiology of children hospitalized for inflammatory bowel disease in Japan: inpatient database analysis. Pediatr Int. 2015;57:443–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Oriuchi T, Hiwatashi N, Kinouchi Y, Takahashi S, Takagi S, Negoro K, et al. Clinical course and longterm prognosis of Japanese patients with Crohn’s disease: predictive factors, rates of operation, and mortality. J Gastroenterol. 2003;38:942–53.CrossRefGoogle Scholar
  9. 9.
    Mizushima T, Ohno Y, Nakajima K, Kai Y, Iijima H, Sekimoto M, et al. Malignancy in Crohn’s disease: incidence and clinical characteristics in Japan. Digestion. 2010;81:265–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Yano Y, Matsui T, Hirai F, Okado Y, Sato Y, Tsurumi K, et al. Cancer risk in Japanese Crohn’s disease patients: investigation of the standardized incidence ratio. J Gastroenterol Hepatol. 2013;28:1300–5.CrossRefGoogle Scholar
  11. 11.
    Watanabe T, Sasaki I, Sugita A, Fukushima K, Futami K, Hibi T, et al. Time trend and risk factors for reoperation in Crohn’s disease in Japan. Hepato-Gastroenterology. 2012;59:1081–6.PubMedGoogle Scholar
  12. 12.
    Kusaka J, Shiga H, Kuroha M, Kimura T, Kakuta Y, Endo K, et al. Risk factors associated with postoperative recurrence and repeat surgery in Japanese patients with Crohn’s disease. Int J Color Dis. 2017;32:1407–13.CrossRefGoogle Scholar
  13. 13.
    Shinagawa T, Hata K, Ikeuchi H, Fukushima K, Sugita A, Suzuki Y, et al. Time trends and risk factors for reoperation after initial intestinal surgery for Crohn’s disease in Japan: a retrospective multicenter study. Dis Colon Rectum. 2017;60:e412–3.Google Scholar
  14. 14.
    Nakahigashi M, Yamamoto T. Increases in body mass index during infliximab therapy in patients with Crohn’s disease: an open label prospective study. Cytokine. 2011;56:531–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Kakuta Y, Naito T, Onodera M, Kuroha M, Kimura T, Shiga H, et al. NUDT15 R139C causes thiopurine-induced early severe hair loss and leukopenia in Japanese patients with IBD. Pharmacogenomics J. 2016;16:280–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hugot JP, Laurent-Puig P, Gower-Rousseau C, Olson JM, Lee JC, Beaugerie L, et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature. 1996;379:821–3.CrossRefGoogle Scholar
  18. 18.
    Lv C, Yang X, Zhang Y, Zhao X, Chen Z, Long J, et al. Confirmation of three inflammatory bowel disease susceptibility loci in a Chinese cohort. Int J Color Dis. 2012;27:1465–72.CrossRefGoogle Scholar
  19. 19.
    Long WY, Chen L, Zhang CL, Nong RM, Lin MJ, Zhan LL, et al. Association between NOD2/CARD15 gene polymorphisms and Crohn’s disease in Chinese Zhuang patients. World J Gastroenterol. 2014;20:4737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chua KH, Hilmi I, Ng CC, Eng TL, Palaniappan S, Lee WS, et al. Identification of NOD2/CARD15 mutations in Malaysian patients with Crohn’s disease. J Dig Dis. 2009;10:124–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Inoue N, Tamura K, Kinouchi Y, Fukuda Y, Takahashi S, Ogura Y, et al. Lack of common NOD2 variants in Japanese patients with Crohn’s disease. Gastroenterology. 2002;123:86–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Croucher PJ, Mascheretti S, Hampe J, Huse K, Frenzel H, Stoll M, et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet. 2003;11:6–16.CrossRefPubMedGoogle Scholar
  23. 23.
    Pauleau AL, Murray PJ. Role of Nod2 in the response of macrophages to toll-like receptor agonists. Mol Cell Biol. 2003;23:7531–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14:3499–506.CrossRefPubMedGoogle Scholar
  25. 25.
    Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS, Dhall D, et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 2008;135:552–67.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nakagome S, Chinen H, Iraha A, Hokama A, Takeyama Y, Sakisaka S, et al. Confounding effects of microbiome on the susceptibility of TNFSF15 to Crohn’s disease in the Ryukyu islands. Hum Genet. 2017;136:387–97.CrossRefPubMedGoogle Scholar
  28. 28.
    Hirano A, Yamazaki K, Umeno J, Ashikawa K, Aoki M, Matsumoto T, et al. Association study of 71 European Crohn’s disease susceptibility loci in a Japanese population. Inflamm Bowel Dis. 2013;19:526–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Arimura Y, Isshiki H, Onodera K, Nagaishi K, Yamashita K, Sonoda T, et al. Characteristics of Japanese inflammatory bowel disease susceptibility loci. J Gastroenterol. 2014;49:1217–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Fuyuno Y, Yamazaki K, Takahashi A, Esaki M, Kawaguchi T, Takazoe M, et al. Genetic characteristics of inflammatory bowel disease in a Japanese population. J Gastroenterol. 2016;51:672–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Okada Y, Yamazaki K, Umeno J, Takahashi A, Kumasaka N, Ashikawa K, et al. HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for ulcerative colitis but reduces risk for Crohn’s disease. Gastroenterology. 2011;141:864–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Yamazaki K, Umeno J, Takahashi A, Hirano A, Johnson TA, Kumasaka N, et al. A genome-wide association study identifies 2 susceptibility loci for Crohn’s disease in a Japanese population. Gestroenterology. 2013;144:781–8.CrossRefGoogle Scholar
  33. 33.
    Saruta M, Targan SR, Mei L, Ippoliti AF, Taylor KD, Rotter JI. High frequency haplotypes in the X chromosome locus TLR8 are associated with both CD and UC in females. Inflamm Bowel Dis. 2009;15:321–7.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lee HS, Oh H, Yang SK, Baek J, Jung S, Hong M, et al. X chromosome-wide association study identifies a susceptibility locus for inflammatory bowel disease in Koreans. J Crohns Colitis. 2017;11:820–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T, et al. Dietary risk factors for inflammatory bowel disease: a multicenter case-control study in Japan. Inflamm Bowel Dis. 2005;11:154–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Burisch J, Pedersen N, Cukovic-Cavka S, Turk N, Kaimakliotis I, Duricova D, et al. Environmental factors in a population-based inception cohort of inflammatory bowel disease patients in Europe – an ECCO-EpiCOM study. J Crohns Colitis. 2014;8:607–16.CrossRefPubMedGoogle Scholar
  37. 37.
    Kawaguchi T, Mori M, Saito K, Suga Y, Hashioto M, Sako M, et al. Food antigen-induced immune responses in Crohn’s disease patients and experimental colitis mice. J Gastroenterol. 2015;50:394–405.CrossRefPubMedGoogle Scholar
  38. 38.
    Walker LJ, Aldhous MC, Drummond HE, Smith BRK, Nimmo ER, Arnott IDR, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease are associated with disease severity but not NOD2/CARD15 mutations. Clin Exp Immunol. 2004;135:490–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Quinton JF, Sendid B, Reumaux D, Duthilleul P, Cortot A, Grandbastien B, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42:788–91.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Peeters M, Joossens S, Vermeire S, Vlietinck R, Bossuyt X, Rutgeerts P. Diagnostic value of anti-saccharomyces cerevisiae and antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease. Am J Gastroenterol. 2001;96:730–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Ruemmele FM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology. 1998;115:822–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Rennick DM, models FMML f g e a. XII. IL-10-deficient (IL-10−/−) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2000;278:G829–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Hale LP, Greer PK. A novel murine model of inflammatory bowel disease and inflammation-associated colon cancer with ulcerative colitis-like features. PLoS One. 2012;7:e41797.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cai C, Shen J, Zhao D, Qiao Y, Xu A, Jin S, et al. Serological investigation of food specific immunoglobulin G antibodies in patients with inflammatory bowel disease. PLoS One. 2014;9:e112154.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hisabe T, Matsui T, Sakurai T, Murakami Y, Tanabe H, Matake H, et al. Anti-Saccharomyces cerevisiae antibodies in Japanese patients with inflammatory bowel disease: diagnostic accuracy and clinical value. J Gastroenterol. 2003;38:121–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Jansen A, Mandić AD, Bennek E, Frehn L, Verdier J, Tebrügge I, et al. Anti-food and anti-microbial IgG subclass antibodies in inflammatory bowel disease. Scand J Gastroenterol. 2016;51:1453–61.CrossRefPubMedGoogle Scholar
  47. 47.
    O’Morain C, Segal AW, Levi AJ. Elemental diets in treatment of acute Crohn’s disease. Br Med J. 1980;281:1173–5.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nakahigashi M, Yamamoto T, Sacco R, Hanai H, Kobayashi F. Enteral nutrition for maintainig remission in patients with quiescent Crohn’s disease: current status and future perspectives. Int J Color Dis. 2016;31:1–7.CrossRefGoogle Scholar
  49. 49.
    Okada M, Yao T, Yamamoto T, Takenaka K, Imamura K, Maeda K, et al. Controlled trial comparing an elemental diet with prednisolone in the treatment of active Crohn’s disease. Hepato-gastroenterol. 1990;37:72–80.Google Scholar
  50. 50.
    Ueno F, Matsui T, Matsumoto T, Matsuoka K, Watanabe M, Hibi T, et al. Evidence-based clinical practice guidelines for Crohn’s disease, integrated with formal consensus of experts in Japan. J Gastroenterol. 2013;48:31–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Yamamoto T, Nakahigashi M, Umegae S, Kitagawa T, Matsumoto K. Impact of elemental diet on mucosal inflammation in patients with active Crohn’s disease: cytokine production and endoscopic and histological findings. Inflamm Bowel Dis. 2005;11:580–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A, Escher JC, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J Crohns Colitis. 2014;8:1179–207.CrossRefPubMedGoogle Scholar
  53. 53.
    Zachos M, Tondeur M, Griffiths AM. Enteral nutritional therapy for induction of remission in Crohn’s disease. Cochrane Database Syst Rev. 2007;1:CD000542.Google Scholar
  54. 54.
    Wall CL, Day AS, Gearry RB. Use of exclusive enteral nutrition in adults with Crohn’s disease: a review. World J Gastroenterol. 2013;19:7652–60.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Takagi S, Utsunomiya K, Kuriyama S, Yokoyama H, Takahashi S, Iwabuchi M, et al. Effectiveness of an `half elemental diet` as maintenance therapy for Crohn’s disease: a randomized-controlled trial. Aliment Pharmacol Ther. 2006;24:1333–40.CrossRefPubMedGoogle Scholar
  56. 56.
    Matsui T, Ueki M, Yamada M, Sakurai T, Yao T. Indications and options of nutritional treatment for Crohn’s disease. A comparison of elemental and polymeric diets. J Gastroenterol. 1995;30(Suppl 8):95–7.PubMedGoogle Scholar
  57. 57.
    Wright EK, Kamm MA, Teo SM, Inouye M, Wagner J, Kirkwood CD. Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: a systematic review. Inflamm Bowel Dis. 2015;21:1219–28.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463–72.CrossRefPubMedGoogle Scholar
  59. 59.
    Andoh A, Tsujikawa T, Sasaki M, Mitsuyama K, Suzuki Y, Matsui T, et al. Faecal microbiota profile of Crohn’s disease determined by terminal restriction fragment length polymorphism analysis. Alient Pharmacol Ther. 2009;29:75–82.CrossRefGoogle Scholar
  60. 60.
    Andoh A, Imaeda H, Aomatsu T, Inatomi O, Bamba S, Sasaki M, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol. 2011;46:479–86.CrossRefPubMedGoogle Scholar
  61. 61.
    Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn’s disease. J Gastroenetrol Hepatol. 2013;28:613–9.CrossRefGoogle Scholar
  62. 62.
    Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8:1569–81.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Urashima H, Ohmori I, Shiraki K. Epidemiological survey on chronic inflammatory bowel disease developed during childhood in Japan, and a case-control study on nutrition during infancy. Yonago Acta Med. 1999;42:95–102.Google Scholar
  64. 64.
    Klement E, Cohen RV, Boxman J, Joseph A, Reif S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr. 2004;80:1342–52.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Baron S, Turck D, Leplat C, Merle V, Gower-Rousseau C, Marti R, et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut. 2005;54:357–63.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Strisciuglio C, Giugliano F, Martinelli M, Genni S, Greco L, Staiano A, et al. Impact of environmental and familial factors in a cohort of pediatric patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2017;64:569–74.CrossRefPubMedGoogle Scholar
  67. 67.
    Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006;81:1462–71.CrossRefPubMedGoogle Scholar
  68. 68.
    Takebayshi T, Nishiwaki Y. Current status of epidemiology of IBD in Japan. In: Hibi T, editor. Recent advances in inflammatory bowel disease. Tokyo: Elsevier; 2007. p. 6–10.Google Scholar
  69. 69.
    Naganuma M, Kunisaki R, Yoshimura N, Nagahori M, Yamamoto H, Kimura H, et al. Conception and pregnancy outcome in women with inflammatory bowel disease: a multicentre study from Japan. J Crohns Colitis. 2011;5:317–23.CrossRefPubMedGoogle Scholar
  70. 70.
    Komoto S, Motoya S, Nishiwaki Y, Matsui T, Kunisaki R, Matsuoka K, et al. Pregnancy outcome in women with inflammatory bowel disease treated with anti-tumor necrosis factor and/or thiopurine therapy: a multicenter study from Japan. Intest Res. 2016;14:139–45.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Koji Uchiyama
    • 1
  • Mitsumasa Umesawa
    • 2
  • Yasuo Haruyama
    • 2
  • Toshimi Sairenchi
    • 2
  • Gen Kobashi
    • 2
  1. 1.Laboratory of International Environmental HealthCenter for International Cooperation, Dokkyo Medical UniversityTochigiJapan
  2. 2.Department of Public HealthDokkyo Medical University School of MedicineTochigiJapan

Personalised recommendations