Advertisement

Moving Vehicle Detection in Along-Track Interferometric SAR Complex Images

Chapter

Abstract

In air-to-ground SAR surveillance, it is becoming increasingly desirable to develop the technique for detecting moving targets such as tanks or wheeled vehicles within strong ground clutter.

References

  1. 1.
    D.C. Maori, J. Klare, A.R. Brenner, J.H.G. Ender, Wide-area traffic monitoring with the SAR/GMTI system PAMIR. IEEE Trans. Geosci. Remote Sens. 46(10), 3019–3030 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Wang, Z. Bao, Z. Zhang, J. Ding, Improving coherence of complex image pairs obtained by along-track bistatic SARs using range-azimuth prefiltering. IEEE Trans. Geosci. Remote Sens. 46(1), 3–13 (2008)CrossRefGoogle Scholar
  3. 3.
    E. Chapin, C.W. Chen, Along-track interferometry for ground moving target indication. IEEE Aerosp. Electron. Syst. Mag. 23(6), 19–24 (2008)CrossRefGoogle Scholar
  4. 4.
    J.R. Fienup, Detecting moving targets in SAR imagery by focusing. IEEE Trans. Aerosp. Electron. Syst. 37(3), 794–809 (2001)CrossRefGoogle Scholar
  5. 5.
    I.C. Sikaneta, Detection of ground moving objects with synthetic aperture radar, Ph. D. thesis. University of Ottawa, 2002Google Scholar
  6. 6.
    J.N. Entzminger, JointSTARS and GMTI: past, present and future. IEEE Trans. Aerosp. Electron. Syst. 35(2), 748–761 (1999)CrossRefGoogle Scholar
  7. 7.
    H. Steyskal, J.K. Schindler, P. Franchi, R.J. Mailloux, Pattern synthesis for TechSat21-A distributed space-based radar system. IEEE Antennas Propag. Mag. 45(4), 19–25 (2003)CrossRefGoogle Scholar
  8. 8.
    C. Livingstone, A. Thompson, The moving object detection experiment on RADARSAT-2. Can. J. Remote. Sens. 30(3), 355–368 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Moreira, Real-time synthetic aperture radar (SAR) processing with a new sub-aperture approach. IEEE Trans. Geosci. Remote Sens. 30(4), 714–722 (1992)CrossRefGoogle Scholar
  10. 10.
    C.H. Gierull, Statistics of SAR interferograms with application to moving target detection, DREO Technical Report TR 2001-045, Defense Research Establishment Ottawa, Department of National Defense, Ottawa, Canada, 2001Google Scholar
  11. 11.
    C.H. Gierull, Statistical analysis of multilook SAR interferograms for CFAR detection of ground moving targets. IEEE Trans. Geosci. Remote Sens. 42(4), 691–701 (2004)CrossRefGoogle Scholar
  12. 12.
    J.S. Lee, K.W. Hoppel, S.A. Mango, A.R. Miller, Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(5), 1017–1028 (1994)CrossRefGoogle Scholar
  13. 13.
    E. Previato, Dictionary of Applied Math for Engineers and Scientists (CRC Press, London, 2003)zbMATHGoogle Scholar
  14. 14.
    S.I. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products. 7th edn. (Academic Press, San Diego, CA, 2007)Google Scholar
  15. 15.
    C.J. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, MA, 1998)Google Scholar
  16. 16.
    A.C. Frery, H.J. Muller, C.C. Freitas Yanasse, S.J. Siqueira Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997)CrossRefGoogle Scholar
  17. 17.
    A.C. Frery, J. Jacobo-Berlles, J. Gambini, M. Mejail, Polarimetric SAR image segmentation with B-Splines and a new statistical model. Multidimension. Syst. Signal Process. 21, 319–342 (2010)CrossRefGoogle Scholar
  18. 18.
    A.C. Frery, A.H. Correia, C.C. Freitas, Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans. Geosci. Remote Sens. 45(10), 3098–3109 (2007)CrossRefGoogle Scholar
  19. 19.
    C.C. Freitas, A.C. Frery, A.H. Correia, The polarimetric G distribution for SAR data analysis. Environmetrics 16(1), 13–31 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    N.R. Goodman, Statistical analysis based on a certain multivariate complex gaussian distribution (an introduction). Ann. Math. Stat. 34(152), 152–180 (1963)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.M. Nicolas, F. Tupin, Gamma mixture modeled with second kind statistics: Application to SAR image processing. Paper presented at the IGARSS Conference, Toronto, ON, Canada, 2002, pp. 2489–2491Google Scholar
  22. 22.
    J.M. Nicolas, Introduction to second kind statistic: Application of log-moments and log-cumulants to SAR image law analysis. Trait. Signal 19(3), 139–167 (2002)zbMATHGoogle Scholar
  23. 23.
    R. Abdelfattah, J.M. Nicolas, Interferometric SAR coherence magnitude estimation using second kind statistics. IEEE Trans. Geosci. Remote Sens. 44(7), 1942–1953 (2006)CrossRefGoogle Scholar

Copyright information

© National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National University of Defense TechnologyChangshaChina

Personalised recommendations