Advertisement

Target Detection and Terrain Classification of Single-Channel SAR Images

Chapter

Abstract

With the improving imaging technology of the SAR, more and more high-resolution SAR images are obtained. Interpreting SAR images manually is a vast task and may lead to many mistakes. Therefore, it is greatly necessary to develop the corresponding automatic algorithms. Focusing on the target detection, many algorithms have been developed.

References

  1. 1.
    L.M. Novak, G.J. Owirka, C.M. Netishen, Performance of a high-resolution polarimetric SAR automatic target recognition system. Linc. Lab. J. 6(1), 11–24 (1993)Google Scholar
  2. 2.
    L.M. Novak, G.J. Owirka, W.S. Brower, A.L. Weaver, The automatic target-recognition system in SAIP. Linc. Lab. J. 10(2), 187–202 (1997)Google Scholar
  3. 3.
    W.C. Phillips, SAR image understanding: high speed target detection and site model based exploitation, Ph.D. dissertation, University of Maryland at College Park, 1998Google Scholar
  4. 4.
    S. Kuttikkad, R. Chellappa, Non-Gaussian CFAR techniques for target detection in high resolution SAR images. Proc. ICIP 1, 910–914 (1994)Google Scholar
  5. 5.
    M. E. Smith, P. K. Varshney, in Proceedings of IEEE National Radar Conference. VI-CFAR: a novel CFAR algorithm based on data variability (Syracuse, NY, 1997), pp. 263–268Google Scholar
  6. 6.
    G. Gao, L. Liu, L. Zhao, G. Shi, G. Kuang, An adaptive and fast CFAR a Algorithm based on automatic censoring for target detection in high-resolution SAR image. IEEE Trans. Geosci. Remote Sens. 47(6), 1685–1697 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Erfanian, V.T. Vakili, Introducing excision switching-CFAR in K distributed sea clutter. Signal Process. 89, 1023–1031 (2009)CrossRefGoogle Scholar
  8. 8.
    O.H. Bustos, M.M. Lucini, A.C. Frery, M-estimators of roughness and scale for G0 A-modelled SAR imagery. EURASIP J. Appl. Sig. Process. 2002(1), 105–114 (2002)zbMATHGoogle Scholar
  9. 9.
    H. Allende, A.C. Frery, J. Galbiati, L. Pizarro, M-estimators with asymmetric influence functions: the GA0 distribution case. IEEE Trans. Geosci. Remote Sens. 76(11), 941–956 (2006)zbMATHGoogle Scholar
  10. 10.
    R. Ravid, N. Levanon, Maximum-likehood CFAR for Weibull background. IEE Proc. F-Radar Sig. Process. 139(3), 256–264 (1992)CrossRefGoogle Scholar
  11. 11.
    C. Wang, M. Liao, X. Li, Ship detection in SAR image based on the alpha-stable distribution. Sensors 4948–4960 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Liao, C. Wang, Y. Wang, L. Jiang, Using SAR images to detect ships from sea clutter. IEEE Geosci. Remote Sens. Lett. 5(2), 194–198 (2008)CrossRefGoogle Scholar
  13. 13.
    H.C. Li, W. Hong, Y.R. Wu, P.Z. Fan, On the empirical-statistical modeling of SAR images with generalized gamma distribution. IEEE J. Sel. Top. Sig. Process. 5(3), 386–397 (2011)CrossRefGoogle Scholar
  14. 14.
    E.W. Stacy, A generalization of the gamma distribution. Ann. Math. Statist. 33(3), 1187–1192 (1962)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J.M. Nicolas, Stian Normann Anfinsen (translator), “Introduction to second kind statistic: application of log-moments and log-cumulants to SAR image law analysis”. Trait. Signal 19(3), 139–167 (2002)Google Scholar
  16. 16.
    M. Abramowitz, L.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)zbMATHGoogle Scholar
  17. 17.
    Harry, U.: Hansen’s method applied to the inversion of the incomplete gamma function, with applications. IEEE Trans. Aerosp. Electro. Syst. 21(5), 728–731 (1985)Google Scholar
  18. 18.
    M. Dohler, M. Arndt, Inverse incomplete gamma function and its application. Electron. Lett. 42(1), 46–47 (2006)CrossRefGoogle Scholar
  19. 19.
    A.C. Frery, H.J. Muller, C.C.F. Yanasse, S.J.S. Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997)CrossRefGoogle Scholar
  20. 20.
    M.D. DeVore, J.A. O’Sullivan, Quantitative statistical assessment of conditional models for synthetic aperture radar. IEEE Trans. Image Process. 13(2), 113–125 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Tello, C. López-Martínez, J.J. Mallorqui, A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci. Remote Sens. Lett. 2(2), 201–205 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Ouchi, S. Tamaki, H. Yaguchi, M. Iehara, Ship detection based on coherence images derived from cross correlation of multilook SAR images. IEEE Geosci. Remote Sens. Lett. 1(3), 184–187 (2004)CrossRefGoogle Scholar
  23. 23.
    R.A. English, S.J. Rawlinson, N.M. Sandirasegaram, Development of an ATR workbench for SAR imagery. De Defense R&D, Ottawa, ON, Canada, Technical Report, DRDC Ottawa, TR2002-155, 2002Google Scholar
  24. 24.
    P.W. Vachon, Validation of ship detection by the RADARSAT synthetic aperture radar and the ocean monitoring workstation. Can. J. Remote. Sens. 26(3), 200–212 (2000)CrossRefGoogle Scholar
  25. 25.
    M.P. Wand, M.C. Jones, Kernel Smoothing (Chapman & Hall, 1995)Google Scholar
  26. 26.
    M. Silveira, S. Heleno, in IEEE International Conference on Image Processing (ICIP). Classification of water region in SAR images using level sets and non-parametric density estimation (2009), pp. 1685–1688Google Scholar
  27. 27.
    J. Sun, Modern Pattern Recognition (Publishing House of National University of Defense Techonlogy, Changsha, 2002)Google Scholar
  28. 28.
    S. Erfanian, V.T. Vakili, Introducing excision switching-CFAR in K distributed sea clutter. Sig. Process. 89(6), 1023–1031 (2009)CrossRefGoogle Scholar
  29. 29.
    T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley Interscience, New York, 1991)CrossRefGoogle Scholar
  30. 30.
    M.D. DeVore, J.A. O’Sullivan, Quantitative statistical assessment of conditional models for synthetic aperture radar. IEEE Trans. Image Processing 13(2), 113–125 (2004)CrossRefGoogle Scholar
  31. 31.
    C. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (SciTech Publishing, Raleigh, 2004)Google Scholar
  32. 32.
    G. Moser et al., SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE Trans. Image Process. 15 (2006)CrossRefGoogle Scholar
  33. 33.
    G. Moser et al., in IS&TSPIE Electronic Imaging. High resolution SAR-image classification by Markov random fields and finite mixtures (2010)Google Scholar
  34. 34.
    A.C. Frery et al., A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35, 648–659 (1997)CrossRefGoogle Scholar
  35. 35.
    J.-M. Nicolas, A. Maruani, in EUSIPCO, Tampere, Finland. Lower-order statistics: a new approach for probability density functions defined on R+ (2000)Google Scholar
  36. 36.
    S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)CrossRefGoogle Scholar
  37. 37.
    D.P. Kottk et al., in SPIE, Orland, Florida. Design for HMM-based SAR ATR (1998)Google Scholar
  38. 38.
    Z. Kato et al., in IEEE International Conference on Acoustics, Speech, and Signal Processing. Satellite image classification using a modified metropolis dynamics (1992), pp. 573–576Google Scholar
  39. 39.
    V. Krylov, J. Zerubia, High Resolution SAR Image Classification (INRIA, Paris, 2010)Google Scholar
  40. 40.
    G.M. Foody, Status of landcover classification accuracy assessment. Remote Sens. Environ. 58, 1459–1460 (1992)Google Scholar

Copyright information

© National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National University of Defense TechnologyChangshaChina

Personalised recommendations