Advertisement

Statistical Modeling of Single-Channel SAR Images

Chapter

Abstract

There has been a growing interest in SAR image interpretation for a variety of civilian and military applications, such as terrain classification, land or sea monitoring, target detection and recognition, etc. Presently, one of major strategies of SAR image processing is to use the classical methods of statistical pattern recognition, where it is crucial to develop precise models for the statistics of the pixel amplitudes or intensities (Oliver and Quegan in Understanding Synthetic Aperture Radar Images. Artech House, Norwood 1998, [1]).

References

  1. 1.
    C.J. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, MA, 1998)Google Scholar
  2. 2.
    Y. Delignon, W. Pieczynski, Modelling non-Rayleigh speckle distribution in SAR images. IEEE Trans. Geosci. Remote Sens. 40(6), 1430–1435 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Achim, E.E. Kuruoglu, J. Zerubia, SAR image filtering based on the heavy-tailed Rayleigh model. IEEE Trans. Image Process. 15(9), 2686–2693 (2006)CrossRefGoogle Scholar
  4. 4.
    E.E. Kuruoglu, J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process. 13(4), 527–533 (2004)CrossRefGoogle Scholar
  5. 5.
    M.S. Greco, G. Gini, Statistical analysis of high-resolution SAR ground clutter data. IEEE Trans. Geosci. Remote Sens. 45(3), 566–575 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Moser, J. Zerubia, S.B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE Trans. Image Process. 15(6), 1429–1442 (2006)CrossRefGoogle Scholar
  7. 7.
    A.C. Frery, H.J. Muller, C.C. Freitas Yanasse, S.J. Siqueira Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997, May)CrossRefGoogle Scholar
  8. 8.
    A.C. Frery, J. Jacobo-Berlles, J. Gambini, M. Mejail, Polarimetric SAR image segmentation with B-Splines and a new statistical model. Multidimension. Syst. Signal Process. 21, 319–342 (2010)CrossRefGoogle Scholar
  9. 9.
    A.C. Frery, A.H. Correia, C.C. Freitas, Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans. Geosci. Remote Sens. 45(10), 3098–3109 (2007)CrossRefGoogle Scholar
  10. 10.
    C.C. Freitas, A.C. Frery, A.H. Correia, The polarimetric G distribution for SAR data analysis. Environmetrics 16(1) 13–11 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Allende, A.C. Frery, J. Galbiati, L. Pizarro, M-estimators with asymmetric influence functions: The GA0 distribution case. J. Stat. Comput. Simul. 76(11), 941–956 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    K.L.P. Vasconcellos, A.C. Frery, L.B. Silva, Improving estimation in speckled imagery. Comput. Stat. 20(3), 503–519 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Parzen, On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Gao, A parzen-window-kernel-based CFAR algorithm for ship detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 8(3), 557–561 (2011)CrossRefGoogle Scholar
  15. 15.
    Q. Jiang, E. Aitnouri, S. Wang, D. Ziou, Automatic detection for ship target in SAR imagery using PNN-model. Can. J. Remote. Sens. 26(4), 297–305 (2000)CrossRefGoogle Scholar
  16. 16.
    J.M. Nicolas, F. Tupin, Gamma mixture modeled with second kind statistics: Application to SAR image processing. Paper presented at the IGARSS conference (Toronto, ON, Canada, 2002,) pp. 2489–2491Google Scholar
  17. 17.
    G. Moser, J. Zerubia, S.B. Serpico, Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation. IEEE Trans. Geosci. Remote Sens. 44(1), 118–200 (2006)CrossRefGoogle Scholar
  18. 18.
    G.J. McLachlan, D. Peel, Finite Mixture Models (Wiely, New York, 2000)CrossRefGoogle Scholar
  19. 19.
    V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Enhanced dictionary-based SAR amplitude distribution estimation and its validation with very high-resolution data. IEEE Geosci. Remote Sens. Lett. 8(1), 148–152 (2011)CrossRefGoogle Scholar
  20. 20.
    V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Supervised highresolution dual-polarization SAR image classification by finite mixtures and copulas. IEEE J. Sel. Top. Signal Process. 5(3), 554–566 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Gao, Statistical modeling of SAR images: A survey. Sensors 10, 775–795 (2010)CrossRefGoogle Scholar
  22. 22.
    V. Anastassopoulos, G.A. Lampropoulos, A. Drosopoulos, M. Rey, High resolution radar clutter statistics. IEEE Trans. Aerosp. Electron. Syst. 35(1), 43–60 (1999)CrossRefGoogle Scholar
  23. 23.
    H.C. Li, W. Hong, Y.R. Wu, P.Z. Fan, On the empirical-statistical modeling of SAR images with generalized gamma distribution. IEEE J. Sel. Top. Signal Process. 5(3), 386–397 (2011)CrossRefGoogle Scholar
  24. 24.
    E.W. Stacy, A generalization of the gamma distribution. Ann. Math. Stat. 33(3), 1187–1192 (1962)MathSciNetCrossRefGoogle Scholar
  25. 25.
    J.M. Nicolas, Introduction to second kind statistic: Application of log-moments and log-cumulants to SAR image law analysis. Trait. Signal 19(3), 139–167 (2002)zbMATHGoogle Scholar
  26. 26.
    S.N. Anfinsen, T. Eltoft, Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Trans. Geosci. Remote Sens. 49(6), 2281–2295 (2011)CrossRefGoogle Scholar
  27. 27.
    C. Tison, J.M. Nicolas, F. Tupin, H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)CrossRefGoogle Scholar
  28. 28.
    T. Esch, M. Thiel, A. Schenk, A. Roth, A. Müller, S. Dech, Delineation of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Trans. Geosci. Remote Sens. 48(2), 905–916 (2010)CrossRefGoogle Scholar
  29. 29.
    S.I. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. ( Academic Press, San Diego, CA, 2007)Google Scholar
  30. 30.
    R. Ravid, N. Levanon, Maximum-likehood CFAR for Weibull background. in IEE Proceedeeings-F, vol. 139, no. 3 (1992, June), pp. 256–264Google Scholar
  31. 31.
    X. Qin, S. Zhou, H. Zou, G. Gao, Statistical modeling of sea clutter in high-resolution SAR images using generalized gamma distribution. in Proceeding of IEEE Computer Vision in Remote Sensor (CVRS) (Xiamen, China, 2012, December), pp. 306–310Google Scholar
  32. 32.
    J. Martín-de-Nicolás, M.P. Jarabo-Amores, D. Mata-Moya, N. del-Rey-Maestre, J.L. Bárcena-Humanes, Statistical analysis of SAR sea clutter for classification purposes. Remote Sens. 6(10) 9379–9411 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Gao, K. Ouyang, Y. Luo, S. Liang, S. Zhou, Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images. IEEE Trans. Geosci. Remote Sens. 55(3), 1812–1832 (2017)CrossRefGoogle Scholar
  34. 34.
    V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, On the method of logarithmic cumulants for parametric probability density function estimation. IEEE Trans. Image Process. 22(10), 3791–3806 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    G. Gao, S. Gao, K. Ouyang, J. He, G. Li, Scheme for characterizing clutter statistics in SAR amplitude images by combining two parametric models. IEEE Trans. Geosci. Remote Sens. 56(10), 5636–5646 (2018)CrossRefGoogle Scholar
  36. 36.
    D.J. Crisp, The state-of-the-art in ship detection in synthetic aperture radar imagery. DSTO, Dept. Defence, Australian Government, Canberra, Australia, Public Release Document DSTO-RR-0272 (2004)Google Scholar
  37. 37.
    M. Stasolla, J.J. Mallorqui, G. Margarit, C. Santamaria, N. Walker, A comparative study of operational vessel detectors for maritime surveillance using satellite-borne synthetic aperture radar IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 9(6) 2687–2701 (2016, June)CrossRefGoogle Scholar
  38. 38.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 10th edn. (Dover, New York, 1972)zbMATHGoogle Scholar
  39. 39.
    S. Kullback, R.A. Leibler, On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)MathSciNetCrossRefGoogle Scholar

Copyright information

© National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National University of Defense TechnologyChangshaChina

Personalised recommendations