Advertisement

Overview for Statistical Modeling of SAR Images

Chapter

Abstract

Statistical modeling of SAR images is one of the basic problems of SAR image interpretation. It involves several fields such as pattern recognition, image processing, signal analysis, probability theory, and electromagnetic scattering characteristics analysis of targets etc. [1]. Generally speaking, statistical modeling of SAR images falls into the category of computer modeling and simulation. At present, one of the major strategies of SAR image interpretation is to use the methods of classical statistical pattern recognition which are based on Bayesian Theory and can reach a theoretically optimal solution [1, 2]. To utilize these methods for SAR image interpretation, a proper statistical distribution must be adopted to model SAR image data [1, 2]. Therefore, in the past ten years, statistical modeling of SAR image has become an active research field [1].

References

  1. 1.
    C.J. Oliver, Understanding Synthetic Aperture Radar Images (Artech House, Boston/London, 1998), Chaps. 4, 5Google Scholar
  2. 2.
    Q. Zhang, Research on Detection Methods of Vehicle Targets from SAR Images based on Statistical Model (in Chinese). Master’s Dissertation, National University of Defence Technology, China, 2005, Chap. 2Google Scholar
  3. 3.
    A. Achim, E.E. Kuruoglu, J. Zerubia, SAR image filtering based on the heavy-tailed Rayleigh model. IEE Trans. Image Process. 15(9), 2686–2693 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Achim, P. Tsakalides, A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 41(8), 1773–1784 (2003)CrossRefGoogle Scholar
  5. 5.
    M. Walessa, M. Datcu, Model-based despeckling and information extraction from SAR images. IEEE Trans. Geosci. Remote Sens. 38(9), 2258–2269 (2000)CrossRefGoogle Scholar
  6. 6.
    R. Touzi, A review of speckle filtering in the context of estimation theory. IEEE Trans. Geosci. Remote Sens. 40(11), 2392–2404 (2002)CrossRefGoogle Scholar
  7. 7.
    F. Zhang, Y.M. Yoo, L.M. Koh, Y.M. Kim, Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Trans. Med. Imaging 26(2), 200–211 (2007)CrossRefGoogle Scholar
  8. 8.
    J.S. Lee, Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 17, 24–32 (1981)CrossRefGoogle Scholar
  9. 9.
    V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering for multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(2), 157–162 (1982)CrossRefGoogle Scholar
  10. 10.
    R. Touzi, A. Lopes, P. Bousquet, A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sensing 26, 764–773 (1988)CrossRefGoogle Scholar
  11. 11.
    P.T. Macri, C.J. Oliver, P. Lombardo, Segmentation-based joint classification of SAR and optical images. IEE Proc. Radar Sonar Navig. 149(6), 281–296 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Lee, I. Jurkevich, Segmentation of SAR images. IEEE Trans. Geosci. Remote Sens. 27, 674–680 (1989)CrossRefGoogle Scholar
  13. 13.
    R. FjØrtØft, Y. Delignon, W. Pieczynski, M. Sigelle, F. Tupin, Unsupervised classification of radar images using hidden Markov chains and hidden random fields. IEEE Trans. Geosci. Remote Sens. 41, 675–686 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Koukoulas, F.T. Ulaby, L.E. Pierce, The Bayesian hierarchical classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 42(2), 469–477 (2004)CrossRefGoogle Scholar
  15. 15.
    A.N. Nyonngui, E. Tonye, A. Akono, Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images. Int. J. Remote Sens. 23(9), 1895–1925 (2002)CrossRefGoogle Scholar
  16. 16.
    H. Deng, D.A. Clausi, Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Trans. Geosci. Remote Sens. 43(3), 528–538 (2005)CrossRefGoogle Scholar
  17. 17.
    C. Tison, J.M. Nicolas, F. Tupin, H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)CrossRefGoogle Scholar
  18. 18.
    M.D. Bisceglie, C. Galdi, CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. GRS. 43(4), 833–842 (2005)Google Scholar
  19. 19.
    D. Blacknell, Contextual information in SAR target detection. IEE Proc. Radar, Sonar and Navig. 148(1), 41–47 (2001)CrossRefGoogle Scholar
  20. 20.
    G. Gao, G. Kuang, Q. Zhang, D. Li, Fast detecting and locating groups of targets in high-resolution SAR images. Pattern Recogn. 40, 1378–1384 (2007)zbMATHCrossRefGoogle Scholar
  21. 21.
    L.M. Novak et al., The automatic target-recognition system in SAIP. Lincoln Lab. J. 10(2), 187–202 (1997)Google Scholar
  22. 22.
    A. Farrouki, M. Barkat, Automatic censoring CFAR variability for nonhomogeneous environments. IEE Proc. Radar, Sonar and Navig. 152(1), 43–51 (2005)CrossRefGoogle Scholar
  23. 23.
    J.S. Salazar II, Detection Schemes for Synthetic Aperture Radar Imagery Based On a Beta Prime Statistical Model. Doctor’s dissertation, The New Mexico University, 1999, Chap. 5Google Scholar
  24. 24.
    R.A. English et al., Development of an ATR Workbench for SAR Imagery. Technical Report, DRDC, Ottawa, 2005Google Scholar
  25. 25.
    S. Cimmino, G. Franceschetti, A. Iodice, Efficient spotlight SAR raw signal simulation of extended scenes. IEEE Trans. Geosci. Remote Sens. 41(10), 478–489 (2003)CrossRefGoogle Scholar
  26. 26.
    H.H. Arsenault, G. April, Properties of speckle integrated with a finite aperture and logarithmically transformed. J. Opt. Soc. Am. 66(11), 1160–1163 (1976)CrossRefGoogle Scholar
  27. 27.
    K.D. Ward, Compound representation of high resolution sea clutter. Electron. Lett. 7, 561–565 (1981)CrossRefGoogle Scholar
  28. 28.
    A.C. Frery, H.J. Muller, C.C.F. Yanasse, S.J.S. Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. GRS 35(3), 648–659 (1997)CrossRefGoogle Scholar
  29. 29.
    G. Moser et al., SAR amplitude probability density function estimation based on a generalized Gaussian scattering model. SPIE 5573, 307–318 (2004)Google Scholar
  30. 30.
    G. Moser, J. Zerubia, S.B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE Trans. Image Process. 15(6), 1429–1442 (2006)CrossRefGoogle Scholar
  31. 31.
    R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2001)zbMATHGoogle Scholar
  32. 32.
    G. Moser, J. Zerubia, S.B. Serpico, Dictionary-based stochastic expectation–maximization for SAR amplitude probability density function estimation. IEEE Trans. Geosci. Remote Sens. 44(1) (2006)CrossRefGoogle Scholar
  33. 33.
    R.A. Rendner, H.F. Walker, Mixture densities, maximum likelihood, and the EM algorithm. SIAM REV 26(2), 195–239 (1984)MathSciNetCrossRefGoogle Scholar
  34. 34.
    I.R. Joughin et al., Maximum likelihood estimation of K distribution parameters for SAR data. IEEE Trans. GRS 31(5), 989–999 (1993)Google Scholar
  35. 35.
    M.S. Greco, F. Gini, Statistical analysis of high-resolution SAR ground clutter data. IEEE Trans. Geosci. Remote Sens. 45(3), 566–575 (2007)CrossRefGoogle Scholar
  36. 36.
    M.D. DcVore, J.A. O’Sullivan, Statistical assessment of model fit for synthetic aperture radar data. SPIE 4382, 379–388 (2001)Google Scholar
  37. 37.
    V. Anastassopoulos, High resolution radar clutter statistics. IEEE Trans. AES 35(1), 43–59 (1999)Google Scholar
  38. 38.
    H. Akaike, Information theory and an extension of maximum likelihood principle, in 2nd International Symposium on Information Theory, ed. by B.N. Petrov, F. Csaki (Akademiai Kiado, Budapest, 1973), pp. 267–281Google Scholar
  39. 39.
    J.B. Billingsley, A. Farina, F. Gini, M.V. Greco, L. Verrazzani, Statistical analyses of measured radar ground clutter data. IEEE Trans. Aerospace Electronic Systems 35(3), 579–593 (1999)CrossRefGoogle Scholar
  40. 40.
    Y. Delignon, W. Pieczynski, Modelling non-Rayleigh speckle distribution in SAR images. IEEE Trans. GRS. 40(6), 1430–1435 (2002)Google Scholar
  41. 41.
    A.P. Blake et al., High resolution SAR clutter textural analysis and simulation. SPIE 2584, 101–108 (1995)Google Scholar
  42. 42.
    G. Gao et al., The multiplicative noise analysis of SAR images. Signal Process. (China) 11(3), 178–196 (2006). (in Chinese)Google Scholar
  43. 43.
    R.B. D’Agostino, E.S. Pearson, Tests for departure from normality. Empirical results for the distributions of b2 and \( \sqrt b_{1} \). Biometrika 60(3), 613–622 (1973)MathSciNetzbMATHGoogle Scholar
  44. 44.
    D. Blacknell et al., Estimators and distributions in single and multi-look polarimetric and interferometric data, in IGRASS’94 (IEEE,1994), pp. 8–12Google Scholar
  45. 45.
    E. Ertin, L.C. Potter, Polarimetric classification of scattering centers using M-ary Bayesian decision rules. IEEE Trans. AES 36(3), 738–749 (2000)Google Scholar
  46. 46.
    I.R. Joughin, D.P. Winebrenner, D.B. Percival, Probability density functions for multilook polarimetric signatures. IEEE Trans. Geosci. Remote Sens. 32(3), 562–574 (1994)CrossRefGoogle Scholar
  47. 47.
    J.S. Lee, K.W. Hoppel, S.A. Mango, A.R. Miller, Inensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(5), 1017–1028 (1994)CrossRefGoogle Scholar
  48. 48.
    Q. Jiang et al., Ship detection in RADARSAT SAR imagery using PNN-Model, in Proceedings of ADRO Symposium’98 (1998)Google Scholar
  49. 49.
    E. Parzen, On estimation of probability density function and mode. Signal Process. 33, 267–281 (1962)MathSciNetzbMATHGoogle Scholar
  50. 50.
    C.M. Bishop, Neural Networks for Pattern Recognition, 2nd edn. (Oxford University Press, Oxford, U.K., 1996)zbMATHGoogle Scholar
  51. 51.
    J. Bruzzone, M. Marconcini, U. Wegmuller, A. Wiesmann, An advanced system for the automatic classification of multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 42(6), 1321–1334 (2004)CrossRefGoogle Scholar
  52. 52.
    P. Mantero et al., Partially supervised classification of remote sensing images using SVM-based probability density estimation. IEEE Trans. Geosci. Remote Sens. 43(3), 559–570 (2005)CrossRefGoogle Scholar
  53. 53.
    V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)Google Scholar
  54. 54.
    J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation, in Advances in kernel methods support vector learning, ed. by B. Scholkopf, C.J.C. Burges, A.J. Smola (MIT Press, Cambridge, MA, 1999), pp. 293–306Google Scholar
  55. 55.
    E.E. Kuruoglu, J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process. 13(4), 527–533 (2004)CrossRefGoogle Scholar
  56. 56.
    J.W. Goodman, Some fundamental properties of speckle. J. Opt. Soc. Amer. 66, 1145–1150 (1977)CrossRefGoogle Scholar
  57. 57.
    A. Papoulis, Probability, random variables, and stochastic processed, 3rd edn. (MeGraw Hill, New York, 1991)Google Scholar
  58. 58.
    L.M. Kaplan, Analysis of multiplicative speckle models for template-based SAR ATR. IEEE Trans. AES 37(4), 1424–1432 (2001)Google Scholar
  59. 59.
    C.L. Martinez et al., Polarimetric SAR speckle noise model. IEEE Trans. GRS 41(10), 2232–2242 (2003)Google Scholar
  60. 60.
    L.P. Fred, Texture and speckle in high resolution synthetic aperture radar clutter. IEEE Trans. GRS 31(1), 192–203 (1993)Google Scholar
  61. 61.
    H. Xie, L.E. Pierce, F.T. Ulaby, Statistical properties of logarithmically transformed speckle. IEEE Trans. GRS 40(3), 721–727 (2002)Google Scholar
  62. 62.
    M. Thr, K.C. Chin, J.W. Goodman, When is speckle noise multiplicative. Appl. Opt. 21, 1157–1159 (1982)CrossRefGoogle Scholar
  63. 63.
    J.W. Goodman, Statistical properties of laser speckle patterns, laser speckle and related phenomena (Springer Verlag, Heidelberg, Germany, 1975), pp. 9–75Google Scholar
  64. 64.
    E. Jakeman, P.N. Pusey, A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propagat. AP-24(6), 806–814 (1976)CrossRefGoogle Scholar
  65. 65.
    C.J. Oliver, Correlated K-distribution scattering model. Opt. Acta 32, 1515–1547 (1985)CrossRefGoogle Scholar
  66. 66.
    S.H. Yueh, J.A. Kong, K distribution and polarimetric terrain radar clutter. J. Electromagn. Waves Applicat. 3(8), 747–768 (1989)CrossRefGoogle Scholar
  67. 67.
    Y. Delignon, R. Garello, A. Hillion, Statistical modeling of ocean SAR images. Proc. IEE Radar Sonar Navig. 144, 348–354 (1997)CrossRefGoogle Scholar
  68. 68.
    R.S. Raghavan, A method for estimating parameters of K-distributed clutter. IEEE Trans. AES 27(2), 238–246 (1991)Google Scholar
  69. 69.
    D. Blacknell, Comparison of parameter estimators for K-distribution. IEE Proc.-Radar Sonar Navig. 141(1), 45–52 (1994)CrossRefGoogle Scholar
  70. 70.
    C.J. Oliver, A model for non-Rayleigh scattering statistics. Opt. Acta 31(6), 701–722 (1984)CrossRefGoogle Scholar
  71. 71.
    T. Eltoft, K.A. Hogda, Non-Gaussian signal statistics in ocean SAR imagery. IEEE Trans. Geosci. Remote Sens. 36(2), 562–575 (1998)CrossRefGoogle Scholar
  72. 72.
    J. Jao. Amplitude distribution of composite terrain radar clutter and the K distribution. IEEE Trans. Antennas Propagat. AP-32(10), 1049–1052 (1984)Google Scholar
  73. 73.
    J.S. Lee et al., Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(6), 1017–1027 (1994)Google Scholar
  74. 74.
    R. Barakat, Direct derivation of intensity and phase statistics of speckle produced by a weak scatterer from the random sinusoid model. J. Opt. Soc. Amer. 71(1), 86–90 (1981)CrossRefGoogle Scholar
  75. 75.
    Y. Delignon, A. Marzouki, W. Pieczynski, Estimation of generalized mixtures and its application to image segmentation. IEEE Trans. Image Process. 6(10), 1364–1375 (2001)CrossRefGoogle Scholar
  76. 76.
    A.C. Frery et al., Alternative distributions for the multiplicative model in SAR images, in International Geoscience Remote Sensing Symposium, vol. 1, Florence, Italy (1995), pp. 169–171Google Scholar
  77. 77.
    H.J. Muller, Modeling of extremely heterogeneous radar backscatter, in IGARSS ‘97, vol. 4 (1997), 1603–1605Google Scholar
  78. 78.
    H.J. Muller, R. Pac, G-statistics for scaled SAR data, in Proceedings IEEE Geoscience and Remote Sensing Symposium, vol. 2 (1999), pp. 1297–1299Google Scholar
  79. 79.
    J.S. Salazar II et al., Statistical modeling of target and clutter in single-look non-polorimetric SAR imagery, in International Conference Signal and Image Processing, Las Vegas, USA (1998)Google Scholar
  80. 80.
    B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, 9 (Springer-Verlag, New York, 1982)zbMATHCrossRefGoogle Scholar
  81. 81.
    T. Eltoft, Modeling the amplitude statistics of ultrasonic images. IEEE Trans. Med. Imaging 25(2), 229–240 (2006)CrossRefGoogle Scholar
  82. 82.
    T. Eltoft, The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics. IEEE Trans. Image Processing 14(11), 1722–1735 (2005)MathSciNetCrossRefGoogle Scholar
  83. 83.
    T. Eltoft, A new model for the amplitude statistics of SAR imagery, in Proceedings of IGARSS, vol. III, July 2003, pp. 1993–1995Google Scholar
  84. 84.
    V. Anastassopoulos et al., A generalized compound model for radar clutter, in IEEE 1994 National Radar Conference, Atlanta, 1994, pp. 41–45Google Scholar
  85. 85.
    V. Anastassopoulos et al., A new clutter model for SAR images, in International Conference on Applications of Photonic Technology, ICAPT ’94, Toronto, 1994, pp. 21–23Google Scholar
  86. 86.
    V. Anastassopoulos et al., High resolution radar clutter classification, in IEEE International Radar Conference, Washington, DC, 1995, pp. 8–11Google Scholar
  87. 87.
    C.J. Nikias et al., Signal Processing with Alpha-Stable Distributions and Applications (Wiley, New York, 1995)Google Scholar
  88. 88.
    R.D. Pierce, RCS characterization using the alpha-stable distribution, in IEEE 1996 National Radar Conference (1996), pp. 394–419Google Scholar
  89. 89.
    R. Kappor et al., UWB radar detection of targets in foliage using alpha-stable clutter models. IEEE Trans. AES 35(3), 819–833 (1999)Google Scholar
  90. 90.
    E.E. Kuruoglu, Density parameter estimation of skewed alpha-stable distributions. IEEE Trans. Signal Process. 49(10), 2192–2201 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    E.E. Kuruoglu, J. Zerubia, Skewed α-stable distributions for modeling textures. Pattern Recognit. Lett. 24, 339–348 (2003)CrossRefGoogle Scholar
  92. 92.
    A. Banerjee, P. Burlina, R. Chellappa, Adaptive target detection in foliage-penetrating SAR images using alpha-stable models. IEEE Trans. Image Process. 8(12), 1823–1831 (1999)CrossRefGoogle Scholar
  93. 93.
    E.E. Kuruoglu et al., Modeling SAR images with a generalization of the Rayleigh distribution, in The 23th Annual Asilomar Conference on Signals, Systems and Computers, vol. 1 (2000), pp. 224–228Google Scholar
  94. 94.
    E.E. Kuruoglu et al., Approximation of alpha-stable probability densities using finite mixtures of Gaussian, in EUSIPCO’98 European Signal Processing Conference, Rhodes, Greece (1998), pp. 989–992Google Scholar
  95. 95.
    E. Conte, M. Longo, Characterization of radar clutter as a spherically invariant random process, in IEE Proceedings F-Communications, Radar and Signal Processing, vol. 134 (Apr. 1987), pp. 191–197CrossRefGoogle Scholar
  96. 96.
    S.F. George, The Detection of Nonfluctuating Targets in Log-Normal Clutter, NRL Report 6796 (1968)Google Scholar
  97. 97.
    S. Kuttikkad, R. Chellappa, Non-Gaussian CFAR techniques for target detection in high resolution SAR images, in Proceedings of ICIP-94 (1994), pp. 910–914Google Scholar
  98. 98.
    K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd edn. (Academic, Orlando, FL, 1990)zbMATHGoogle Scholar
  99. 99.
    F.T. Ulaby et al., Textural information in SAR images. IEEE Trans. GRS 24, 235–245 (1986)Google Scholar
  100. 100.
    R. Dana, D. Knepp, The impact of strong scintillation on space based radar design II: noncoherent detection. IEEE Trans. Aerosp. Electron. Syst. AES-22(1), 34–36 (1986)CrossRefGoogle Scholar
  101. 101.
    M.D. DeVore et al., ATR performance of a Rician model for SAR images. SPIE (2000), p. 4050Google Scholar
  102. 102.
    A.P. Blake et al., High resolution SAR clutter textural analysis. IEE Colloquium on Recent Developments in Radar and Sonar Imaging Systems: What Next? 1995, UK, 10/1–10/9Google Scholar
  103. 103.
    D. Borghys, Interpretation and Registration of High-Resolution Polarimetric SAR Images. ENSTE 031, Paris, 2001Google Scholar
  104. 104.
    D. Blacknell, A mixture distribution model for correlated SAR clutter. SPIE 2958, 38–49 (1996)Google Scholar
  105. 105.
    D. Blacknell, Target detection in correlated SAR clutter. IEE Proc-RSN 147(1), 9–16 (2000)Google Scholar
  106. 106.
    D.A. Shnidman, Generalized radar clutter model. IEEE Trans. AES 35(3), 857–865 (1999)Google Scholar
  107. 107.
    L.P. Fred, Texture and speckle in high resolution synthetic aperture radar clutter. IEEE Trans. Remote Sens. 31(1), 192–203 (1993)CrossRefGoogle Scholar
  108. 108.
    A. Lopes et al., Statistical distribution and texture in multilook and complex SAR images, in International Geoscience and Remote Sensing Symposium, vol. 3, Washington, DC, 1990, pp. 2427–2430Google Scholar

Copyright information

© National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National University of Defense TechnologyChangshaChina

Personalised recommendations