Skip to main content

Achieving Selective Targeting Using Engineered Nanomaterials

  • Chapter
  • First Online:
Thermodynamics and Biophysics of Biomedical Nanosystems

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The development of Drug Delivery Systems (DDS) able to selectively deliver a controlled amount of a drug only to diseased cells would represent a dramatic development in nanomedicine. One of the multiple challenges still paving the way towards this goal is the elaboration of strategies that would allow targeting with extreme accuracy specific cells, as cancerous cells, among a large variety of closely related ones. In this work, we review the most recent nanotechnology applications aiming at controlling the selectivity of the interaction of delivery nanosystems with cells, with a focus on multivalent targeting. We briefly review thermodynamic models of multivalent interactions and highlight the challenges that still need to be addressed to transfer theoretical design principles into practical applications. In particular, suitable experimental systems based on multivalent models often require the control of the nanocarrier characteristics at the molecular level. Traditional delivery methods, however, fail to provide such degree of control. DNA nanotechnology is a growing field of nanoscience that has witnessed impressive developments in the past decades and has led to major advances in the fabrication of nanostructures and self-assembled systems. Relying on the possibility of controlling their molecular interactions by sequence design, nucleic acids can serve the drug delivery program by providing desired nanostructures with nearly atomic precision. In combination with the recent achievements in the research on DNA aptamers, short nucleic acid sequences isolated to interact selectively with a specific target, DNA nanotechnology is undoubtedly one of the most promising tools for the development of selective DDS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel, G.: Current status and future prospects of point-of-care testing around the globe. Expert Rev. Mol. Diagn. 15, 853–855 (2015). https://doi.org/10.1586/14737159.2015.1060126

    Article  Google Scholar 

  2. Alibolandi, M., Ramezani, M., Abnous, K., et al.: In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J. Controlled Release 209, 88–100 (2015). https://doi.org/10.1016/j.jconrel.2015.04.026

    Article  Google Scholar 

  3. Alivisatos, A.P., Johnsson, K.P., Peng, X., et al.: Organization of “nanocrystal molecules” using DNA. Nature 382, 609–611 (1996). https://doi.org/10.1038/382609a0

    Article  Google Scholar 

  4. Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013). https://doi.org/10.1016/j.addr.2012.09.037

    Article  Google Scholar 

  5. Amjad, O.A., Mognetti, B.M., Cicuta, P., Di Michele, L.: Membrane adhesion through bridging by multimeric ligands. Langmuir 33, 1139–1146 (2017). https://doi.org/10.1021/acs.langmuir.6b03692

    Article  Google Scholar 

  6. Andersen, E.S., Dong, M., Nielsen, M.M., et al.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009). https://doi.org/10.1038/nature07971

    Article  Google Scholar 

  7. Angioletti-Uberti, S.: Exploiting receptor competition to enhance nanoparticle binding selectivity. Phys. Rev. Lett. 118, 1–5 (2017). https://doi.org/10.1103/PhysRevLett.118.068001

    Article  Google Scholar 

  8. Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D.: Re-entrant melting as a design principle for DNA-coated colloids. Nat. Mater. 11, 518–522 (2012). https://doi.org/10.1038/nmat3314

    Article  Google Scholar 

  9. Angioletti-Uberti, S., Varilly, P., Mognetti, B.M., et al.: Communication: a simple analytical formula for the free energy of ligand-receptor-mediated interactions. J. Chem. Phys. 138, 0211021–0211024 (2013). https://doi.org/10.1063/1.4775806

    Article  Google Scholar 

  10. Arundhati, G., Heston, W.D.W.: Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem. 91, 528–539 (2003). https://doi.org/10.1002/jcb.10661

    Article  Google Scholar 

  11. Auyeung, E., Li, T.I.N.G., Senesi, A.J., et al.: DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014). https://doi.org/10.1038/nature12739

    Article  Google Scholar 

  12. Baaske, M.D., Foreman, M.R., Vollmer, F.: Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). https://doi.org/10.1038/nnano.2014.180

    Article  Google Scholar 

  13. Bachmann, S.J., Kotar, J., Parolini, L., et al.: Melting transition in lipid vesicles functionalised by mobile DNA linkers. Soft Matter 12, 7804–7817 (2016). https://doi.org/10.1039/C6SM01515H

    Article  Google Scholar 

  14. Bachmann, S.J., Petitzon, M., Mognetti, B.M.: Bond formation kinetics affects self-assembly directed by ligand–receptor interactions. Soft Matter 12, 9585–9592 (2016). https://doi.org/10.1039/C6SM02016J

    Article  Google Scholar 

  15. Baker, B.R., Lai, R.Y., Wood, M.S., et al.: An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128, 3138–3139 (2006). https://doi.org/10.1021/ja056957p

    Article  Google Scholar 

  16. Banga, R.J., Chernyak, N., Narayan, S.P., et al.: Liposomal spherical nucleic acids. J. Am. Chem. Soc. 136(28), 9866–9869 (2014). https://doi.org/10.1021/ja504845f

    Article  Google Scholar 

  17. Beales, P.A., Vanderlick, T.K.: Partitioning of membrane-anchored DNA between coexisting lipid phases. J. Phys. Chem. B 113, 13678–13686 (2009). https://doi.org/10.1021/jp9006735

    Article  Google Scholar 

  18. Bell, G.I., Dembo, M., Bongrand, P.: Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45, 1051–1064 (1984). https://doi.org/10.1016/S0006-3495(84)84252-6

    Article  Google Scholar 

  19. Bell, N.A.W., Keyser, U.F.: Nanopores formed by DNA origami: a review. FEBS Lett. 588, 3564–3570 (2014). https://doi.org/10.1016/j.febslet.2014.06.013

    Article  Google Scholar 

  20. Biffi, S., Cerbino, R., Bomboi, F., et al.: Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proc. Natl. Acad. Sci. 110, 15633–15637 (2013). https://doi.org/10.1073/pnas.1304632110

    Article  Google Scholar 

  21. Biffi, S., Cerbino, R., Nava, G., et al.: Equilibrium gels of low-valence DNA nanostars: a colloidal model for strong glass formers. Soft Matter 11, 3132–3138 (2015). https://doi.org/10.1039/C4SM02144D

    Article  Google Scholar 

  22. Björnmalm, M., Thurecht, K.J., Michael, M., et al.: Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017). https://doi.org/10.1021/acsnano.7b04855

    Article  Google Scholar 

  23. Boal, A.K., Ilhan, F., Derouchey, J.E., et al.: Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000). https://doi.org/10.1038/35008037

    Article  Google Scholar 

  24. Bock, L.C., Griffin, L.C., Latham, J.A., et al.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992). https://doi.org/10.1038/355564a0

    Article  Google Scholar 

  25. Boltasseva, A., Shalaev, V.M.: Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2, 1–17 (2008). https://doi.org/10.1016/j.metmat.2008.03.004

    Article  Google Scholar 

  26. Bomboi, F., Biffi, S., Cerbino, R., et al.: Equilibrium gels of trivalent DNA-nanostars: effect of the ionic strength on the dynamics. Eur. Phys. J. E 38, 64–69 (2015). https://doi.org/10.1140/epje/i2015-15064-9

    Article  Google Scholar 

  27. Bomboi, F., Romano, F., Leo, M., et al.: Re-entrant DNA gels. Nat. Commun. 7, 1–6 (2016). https://doi.org/10.1038/ncomms13191

    Article  Google Scholar 

  28. Brady, R.A., Brooks, N.J., Cicuta, P., Di Michele, L.: Crystallization of amphiphilic DNA C-Stars. Nano Lett. 17(5), 3276–3281 (2017). https://doi.org/10.1021/acs.nanolett.7b00980

    Article  Google Scholar 

  29. Bunka, D.H.J., Stockley, P.G.: Aptamers come of age—at last. Nat. Rev. Microbiol. 4, 588–596 (2006). https://doi.org/10.1038/nrmicro1458

    Article  Google Scholar 

  30. Burke, D.H., Gold, L.: RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 25, 2020–2024 (1997)

    Article  Google Scholar 

  31. Cangialosi, A., Yoon, C.K., Liu, J., et al.: DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017). https://doi.org/10.1126/science.aan3925

    Article  Google Scholar 

  32. Cao, Y.W., Jin, R., Mirkin, C.A.: DNA-modified core–shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961–7962 (2001). https://doi.org/10.1021/ja011342n

    Article  Google Scholar 

  33. Cao, X., Li, S., Chen, L., et al.: Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628 (2009). https://doi.org/10.1093/nar/gkp489

    Article  Google Scholar 

  34. Castro, C.E., Kilchherr, F., Kim, D.N., et al.: A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011). https://doi.org/10.1038/nmeth.1570

    Article  Google Scholar 

  35. Cerchia, L., de Franciscis, V.: Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 28, 517–525 (2018). https://doi.org/10.1016/j.tibtech.2010.07.005

    Article  Google Scholar 

  36. Chang, Y.-C., Yang, C.-Y., Sun, R.-L., et al.: Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3, 1863–1870 (2013). https://doi.org/10.1038/srep01863

    Article  Google Scholar 

  37. Cheifetz, A., Mayer, L.: Monoclonal antibodies, immunogenicity, and associated infusion reactions. Mt. Sinai J. Med. 72, 250–256 (2005)

    Google Scholar 

  38. Chen, H.Y.: Adhesion-induced phase separation of multiple species of membrane junctions. Phys. Rev. E 67, 1–10 (2003). https://doi.org/10.1103/PhysRevE.67.031919

    Article  Google Scholar 

  39. Chen, Y.J., Groves, B., Muscat, R.A., Seelig, G.: DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015). https://doi.org/10.1038/nnano.2015.195

    Article  Google Scholar 

  40. Chester, K., Pedley, B., Tolner, B., et al.: Engineering antibodies for clinical applications in cancer. Tumor Biol 25, 91–98 (2004). https://doi.org/10.1159/000077727

    Article  Google Scholar 

  41. Collier, C.P., Vossmeyer, T., Heath, J.R.: Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998). https://doi.org/10.1146/annurev.physchem.49.1.371

    Article  Google Scholar 

  42. Coombs, D., Dembo, M., Wofsy, C., Goldstein, B.: Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. Biophys. J. 86, 1408–1423 (2004). https://doi.org/10.1016/S0006-3495(04)74211-3

    Article  Google Scholar 

  43. Cox, J.C., Hayhurst, A., Hesselberth, J., et al.: Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108–e108 PMC137152 (2002)

    Google Scholar 

  44. Curk, T., Dobnikar, J., Frenkel, D.: Optimal multivalent targeting of membranes with many distinct receptors. Proc. Natl. Acad. Sci. 114, 7210–7215 (2017). https://doi.org/10.1073/pnas.1704226114

    Article  Google Scholar 

  45. Cutler, J.I., Auyeung, E., Mirkin, C.A.: Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012). https://doi.org/10.1021/ja209351u

    Article  Google Scholar 

  46. Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). https://doi.org/10.1021/cr030698+

    Article  Google Scholar 

  47. Daniels, D.A., Chen, H., Hicke, B.J., et al.: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. U. S. A. 100, 15416–15421 (2003). https://doi.org/10.1073/pnas.2136683100

    Article  Google Scholar 

  48. Dave, N., Liu, J.: Programmable assembly of DNA-functionalized liposomes by DNA. ACS Nano 5, 1304–1312 (2011). https://doi.org/10.1021/nn1030093

    Article  Google Scholar 

  49. de Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press (1974)

    Google Scholar 

  50. Decuzzi, P., Ferrari, M.: The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008). https://doi.org/10.1529/biophysj.107.120238

    Article  Google Scholar 

  51. Demetzos, C., Pippa, N.: Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 21, 250–257 (2014). https://doi.org/10.3109/10717544.2013.844745

    Article  Google Scholar 

  52. Di Michele, L., Jana, P.K., Mognetti, B.M.: Ligand mobility suppresses membrane wrapping in passive endocytosis (2017). ArXiv ID 1708.03733

    Google Scholar 

  53. Ding, F., Guo, S., Xie, M., et al.: Diagnostic applications of gastric carcinoma cell aptamers in vitro and in vivo. Talanta 134, 30–36 (2015). https://doi.org/10.1016/j.talanta.2014.09.036

    Article  Google Scholar 

  54. Dirks, R.M., Bois, J.S., Schaeffer, J.M., et al.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49, 65–88 (2007). https://doi.org/10.1137/060651100

    Article  MathSciNet  MATH  Google Scholar 

  55. Doyen, M., Bartik, K., Bruylants, G.: UV–Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold–citrate aggregates. J. Colloid Interface Sci. 399, 1–5 (2013). https://doi.org/10.1016/j.jcis.2013.02.040

    Article  Google Scholar 

  56. Dreyfus, R., Leunissen, M.E., Sha, R., et al.: Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81, 1–10 (2010). https://doi.org/10.1103/PhysRevE.81.041404

    Article  Google Scholar 

  57. Dua, P., Kim, S., Lee, D.: Nucleic acid aptamers targeting cell-surface proteins. Methods 54, 215–225 (2011). https://doi.org/10.1016/j.ymeth.2011.02.002

    Article  Google Scholar 

  58. Dubacheva, G.V., Curk, T., Auzély-Velty, R., et al.: Designing multivalent probes for tunable superselective targeting. Proc. Natl. Acad. Sci. 112, 5579–5584 (2015). https://doi.org/10.1073/pnas.1500622112

    Article  Google Scholar 

  59. Dubacheva, G.V., Curk, T., Mognetti, B.M., et al.: Superselective targeting using multivalent polymers. J. Am. Chem. Soc. 136, 1722–1725 (2014). https://doi.org/10.1021/ja411138s

    Article  Google Scholar 

  60. Dubertret, B., Calame, M., Libchaber, A.J.: Single-mismatch detection using gold-quenched fluorescent oligonucleotides (vol. 19, p. 365, 2001). Nat. Biotechnol. 19, 680–681 (2001). https://doi.org/10.1038/86762

    Article  Google Scholar 

  61. Duncan, G.A., Bevan, M.A.: Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale 7, 15332–15340 (2015). https://doi.org/10.1039/c5nr03691g

    Article  Google Scholar 

  62. Elghanian, R.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997). https://doi.org/10.1126/science.277.5329.1078

    Article  Google Scholar 

  63. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990). https://doi.org/10.1038/346818a0

    Article  Google Scholar 

  64. Farokhzad, O.C., Cheng, J., Teply, B.A., et al.: Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006). https://doi.org/10.1073/pnas.0601755103

    Article  Google Scholar 

  65. Farokhzad, O.C., Karp, J.M., Langer, R.: Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 3, 311–324 (2006).

    Google Scholar 

  66. Fernandez-Castanon, J., Bomboi, F., Rovigatti, L., et al.: Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars. J. Chem. Phys. 145(84910), 1–7 (2016). https://doi.org/10.1063/1.4961398

    Article  Google Scholar 

  67. Fraccia, T.P., Smith, G.P., Bethge, L., et al.: Liquid crystal ordering and isotropic gelation in solutions of four-base-long DNA oligomers. ACS Nano 10, 8508–8516 (2016). https://doi.org/10.1021/acsnano.6b03622

    Article  Google Scholar 

  68. Fraccia, T.P., Smith, G.P., Zanchetta, G., et al.: Abiotic ligation of DNA oligomers templated by their liquid crystal ordering. Nat. Commun. 6, 1–7 (2015). https://doi.org/10.1038/ncomms7424

    Article  Google Scholar 

  69. Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. U. S. A. 102, 9469–9474 (2005). https://doi.org/10.1073/pnas.0503879102

    Article  Google Scholar 

  70. Gehrels, E.W., Rogers, W.B., Manoharan, V.N.: Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matter 14, 969–984 (2018). https://doi.org/10.1039/C7SM01722G

    Article  Google Scholar 

  71. Gestwicki, J.E., Cairo, C.W., Strong, L.E., et al.: Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002). https://doi.org/10.1021/ja027184x

    Article  Google Scholar 

  72. Gold, L., Janjic, N., Jarvis, T., et al.: Aptamers and the RNA world, past and present. Cold Spring Harb. Perspect. Biol. 4, 1–11 (2012). https://doi.org/10.1101/cshperspect.a003582

    Article  Google Scholar 

  73. Gothelf, K.V.: LEGO-like DNA structures. Science 338, 1159–1160 (2012). https://doi.org/10.1126/science.1229960

    Article  Google Scholar 

  74. Grzybowski, B.A., Huck, W.T.S.: The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016). https://doi.org/10.1038/nnano.2016.116

    Article  Google Scholar 

  75. Günter, M.: The chemical biology of aptamers. Angew. Chem. Int. Ed. 48, 2672–2689 (2009). https://doi.org/10.1002/anie.200804643

    Article  Google Scholar 

  76. Hamaguchi, N., Ellington, A., Stanton, M.: Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001). https://doi.org/10.1006/abio.2001.5169

    Article  Google Scholar 

  77. Han, D., Pal, S., Nangreave, J., et al.: DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011). https://doi.org/10.1126/science.1202998

    Article  Google Scholar 

  78. Herr, J.K., Smith, J.E., Medley, C.D., et al.: Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006). https://doi.org/10.1021/ac052015r

    Article  Google Scholar 

  79. Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977). https://doi.org/10.1103/RevModPhys.49.435

    Article  Google Scholar 

  80. Hongguang, S., Youli, Z.: Aptamers and their applications in nanomedicine. Small 11, 2352–2364 (2015). https://doi.org/10.1002/smll.201403073

    Article  Google Scholar 

  81. Houk, N.K., Leach, G.A., Kim, P.S., Zhang, X.: Binding affinities of host-guest, protein-ligand, and protein–transition-state complexes. Angew. Chem. Int. Ed. 42, 4872–4897 (2003). https://doi.org/10.1002/anie.200200565

    Article  Google Scholar 

  82. Hu, J., Lipowsky, R., Weikl, T.R.: Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. Proc. Natl. Acad. Sci. 110, 15283–15288 (2013). https://doi.org/10.1073/pnas.1305766110

    Article  Google Scholar 

  83. Hu, Q., Li, H., Wang, L., et al.: DNA nanotechnology-enabled drug delivery systems. Chem. Rev. (2018). https://doi.org/10.1021/acs.chemrev.7b00663

  84. Huizenga, D.E., Szostak, J.W.: A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995). https://doi.org/10.1021/bi00002a033

    Article  Google Scholar 

  85. Jabbari, H., Aminpour, M., Montemagno, C.: Computational approaches to nucleic acid origami. ACS Comb Sci 17, 535–547 (2015). https://doi.org/10.1021/acscombsci.5b00079

    Article  Google Scholar 

  86. Jacobs, W.M., Reinhardt, A., Frenkel, D.: Communication: Theoretical prediction of free-energy landscapes for complex self-assembly. J. Chem. Phys. 142, 1–5 (2015). https://doi.org/10.1063/1.4905670

    Article  Google Scholar 

  87. Jacobson, K., Ishihara, A., Inman, R.: Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49, 163–175 (1987). https://doi.org/10.1146/annurev.ph.49.030187.001115

    Article  Google Scholar 

  88. Jiang, Q., Song, C., Nangreave, J., et al.: DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012). https://doi.org/10.1021/ja304263n

    Article  Google Scholar 

  89. Jones, M.R., Seeman, N.C., Mirkin, C.A.: Programmable materials and the nature of the DNA bond. Science 347, 1–11 (2015). https://doi.org/10.1126/science.1260901

    Article  Google Scholar 

  90. Joshi, D., Bargteil, D., Caciagli, A., et al.: Kinetic control of the coverage of oil droplets by DNA-functionalized colloids. Sci. Adv. 2, 1–9 (2016). https://doi.org/10.1126/sciadv.1600881

    Article  Google Scholar 

  91. Joshi, R., Janagama, H., Dwivedi, H.P., et al.: Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23, 20–28 (2009). https://doi.org/10.1016/j.mcp.2008.10.006

    Article  Google Scholar 

  92. Ke, P.C., Lin, S., Parak, W.J., et al.: A decade of the protein corona. ACS Nano 11, 11773–11776 (2017). https://doi.org/10.1021/acsnano.7b08008

    Article  Google Scholar 

  93. Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012). https://doi.org/10.1126/science.1227268

    Article  Google Scholar 

  94. Ke, Y., Ong, L.L., Sun, W., et al.: DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014). https://doi.org/10.1038/nchem.2083

    Article  Google Scholar 

  95. Keefe, A.D., Pai, S., Ellington, A.: Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010). https://doi.org/10.1038/nrd3141

    Article  Google Scholar 

  96. Kim, A.J., Biancaniello, P.L., Crocker, J.C.: Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006). https://doi.org/10.1021/la0528955

    Article  Google Scholar 

  97. Kim, Y.S., Chung, J., Song, M.Y., et al.: Aptamer cocktails: Enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens. Bioelectron. 54, 195–198 (2014). https://doi.org/10.1016/j.bios.2013.11.003

    Article  Google Scholar 

  98. Kim, Y.S., Song, M.Y., Jurng, J., Kim, B.C.: Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal. Biochem. 436, 22–28 (2013). https://doi.org/10.1016/j.ab.2013.01.014

    Article  Google Scholar 

  99. Kimoto, M., Yamashige, R., Matsunaga, K.I., et al.: Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013). https://doi.org/10.1038/nbt.2556

    Article  Google Scholar 

  100. Kitov, P.I., Bundle, D.R.: On the nature of the multivalency effect: a thermodynamic model. J. Am. Chem. Soc. 125, 16271–16284 (2003). https://doi.org/10.1021/ja038223n

    Article  Google Scholar 

  101. Kitov, P.I., Sadowska, J.M., Mulvey, G., et al.: Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000). https://doi.org/10.1038/35001095

    Article  Google Scholar 

  102. Kryza, D., Debordeaux, F., Azéma, L., et al.: Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 1, 16. https://doi.org/10.1371/journal.pone.0149387 (February 22)

    Article  Google Scholar 

  103. LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003). https://doi.org/10.1038/nbt876

    Article  Google Scholar 

  104. Lanfranco, R., Giavazzi, F., Salina, M., et al.: Selective adsorption on fluorinated plastic enables the optical detection of molecular pollutants in water. Phys. Rev. Appl. 5, 1–15 (2016). https://doi.org/10.1103/PhysRevApplied.5.054012

    Article  Google Scholar 

  105. Lanfranco, R., Saez, J., Di Nicolò, E., et al.: Phantom membrane microfluidic cross-flow filtration device for the direct optical detection of water pollutants. Sens. Actuators B Chem. 257, 924–930 (2018). https://doi.org/10.1016/j.snb.2017.11.024

    Article  Google Scholar 

  106. Lee, J.F.: Aptamer database. Nucleic Acids Res. 32, 95D–100 (2004). https://doi.org/10.1093/nar/gkh094

    Article  Google Scholar 

  107. Lee, J.B., Peng, S., Yang, D., et al.: A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 7, 816–820 (2012). https://doi.org/10.1038/nnano.2012.211

    Article  Google Scholar 

  108. Lee, J.F., Stovall, G.M., Ellington, A.D.: Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282–289 (2006). https://doi.org/10.1016/j.cbpa.2006.03.015

    Article  Google Scholar 

  109. Li, D., Qu, L., Zhai, W., et al.: Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 45, 4046–4052 (2011). https://doi.org/10.1021/es104155r

    Article  Google Scholar 

  110. Licata, N.A., Tkachenko, A.V.: Kinetic limitations of cooperativity-based drug delivery systems. Phys. Rev. Lett. 100, 1–4 (2008). https://doi.org/10.1103/physrevlett.100.158102

    Article  Google Scholar 

  111. Liu, H., He, Y., Ribbe, A.E., Mao, C.: Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules 6, 2943–2945 (2005). https://doi.org/10.1021/bm050632j

    Article  Google Scholar 

  112. Liu, F., Sha, R., Seeman, N.C.: Modifying the surface features of two-dimensional DNA crystals. J. Am. Chem. Soc. 121, 917–922 (1999). https://doi.org/10.1021/ja982824a

    Article  Google Scholar 

  113. Liu, D., Wang, Z., Jiang, X.: Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3, 1421–1433 (2011). https://doi.org/10.1039/c0nr00887g

    Article  Google Scholar 

  114. Liu, Y., Zhang, X.: Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011). https://doi.org/10.1039/C0CS00184H

    Article  Google Scholar 

  115. Lo, P.K., Metera, K.L., Sleiman, H.F.: Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Curr. Opin. Chem. Biol. 14, 597–607 (2010). https://doi.org/10.1016/j.cbpa.2010.08.002

    Article  Google Scholar 

  116. Lowe, J.N., Fulton, D.A., Chiu, S.H., et al.: Polyvalent interactions in unnatural recognition processes. J. Org. Chem. 69, 4390–4402 (2004). https://doi.org/10.1021/jo030283o

    Article  Google Scholar 

  117. Loweth, C.J., Caldwell, W.B., Peng, X., et al.: DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38, 1808–1812 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12%3c1808:AID-ANIE1808%3e3.0.CO;2-C

    Article  Google Scholar 

  118. Macfarlane, R.J., Lee, B., Jones, M.R., et al.: Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011). https://doi.org/10.1126/science.1210493

    Article  Google Scholar 

  119. Mammen, M., Choi, S.K., Whitesides, G.M.: Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998). https://doi.org/10.1002/(sici)1521-3773(19981102)37:20%3c2754:aid-anie2754%3e3.0.co;2-3

    Article  Google Scholar 

  120. Mammen, M., Dahmann, G., Whitesides, G.M.: Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J. Med. Chem. 38, 4179–4190 (1995). https://doi.org/10.1021/jm00021a007

    Article  Google Scholar 

  121. Marangoni, K., Neves, A.F., Rocha, R.M., et al.: Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Nat. Publ. Gr. 5, 1–13 (2015). https://doi.org/10.1038/srep12090

    Article  Google Scholar 

  122. Marchi, A.N., Saaem, I., Vogen, B.N., et al.: Toward larger DNA origami. Nano Lett. 14, 5740–5747 (2014). https://doi.org/10.1021/nl502626s

    Article  Google Scholar 

  123. Martinez-Veracoechea, F.J., Frenkel, D.: Designing super selectivity in multivalent nano-particle binding. Proc. Natl. Acad. Sci. 108, 10963–10968 (2011). https://doi.org/10.1073/pnas.1105351108

    Article  Google Scholar 

  124. Maye, M.M., Nykypanchuk, D., van der Lelie, D., Gang, O.: DNA-regulated micro- and nanoparticle assembly. Small 3, 1678–1682 (2007). https://doi.org/10.1002/smll.200700357

    Article  Google Scholar 

  125. Mi, J., Ray, P., Liu, J., et al.: In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther. Nucleic Acids 5, e315 (2016). https://doi.org/10.1038/mtna.2016.27

    Article  Google Scholar 

  126. Di Michele, L., Bachmann, S.J., Parolini, L., Mognetti, B.M.: Communication: free energy of ligand-receptor systems forming multimeric complexes. J. Chem. Phys. 144, 1–5 (2016). https://doi.org/10.1063/1.4947550

    Article  Google Scholar 

  127. Di Michele, L., Eiser, E.: Developments in understanding and controlling self assembly of DNA-functionalized colloids. Phys. Chem. Chem. Phys. 15, 3115–3129 (2013). https://doi.org/10.1039/C3CP43841D

    Article  Google Scholar 

  128. Milam, V.T., Hiddessen, A.L., Crocker, J.C., et al.: DNA-driven assembly of bidisperse, micron-sized colloids. Langmuir 19, 10317–10323 (2003). https://doi.org/10.1021/la034376c

    Article  Google Scholar 

  129. Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). https://doi.org/10.1038/382607a0

    Article  Google Scholar 

  130. Mognetti, B.M., Leunissen, M.E., Frenkel, D.: Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter 8, 2213–2221 (2012). https://doi.org/10.1039/C2SM06635A

    Article  Google Scholar 

  131. Mognetti, B.M., Varilly, P., Angioletti-Uberti, S., et al.: Predicting DNA-mediated colloidal pair interactions. Proc. Natl. Acad. Sci. 109(7), E378:E379 LP-E379 (2012b)

    Google Scholar 

  132. Nakata, M., Zanchetta, G., Chapman, B.D., et al.: End-to-end stacking and liquid crystal formation of 6- to 20-base pair DNA duplexes. Science 318, 1–4 (2009). https://doi.org/10.1126/science.1143826

    Article  Google Scholar 

  133. Narasimhan, B., Goodman, J.T., Vela Ramirez, J.E.: Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu. Rev. Biomed. Eng. 18, 25–49 (2016). https://doi.org/10.1146/annurev-bioeng-082615-030519

    Article  Google Scholar 

  134. Niemeyer, C.M.: DNA as a material for nanotechnology. Angew Chemie Int Ed English 36, 585–587 (2003). https://doi.org/10.1002/anie.199705851

    Article  Google Scholar 

  135. Nykypanchuk, D., Maye, M.M., van der Lelie, D., Gang, O.: DNA-guided crystallisation of colloidal nanoparticles. Nature 451, 549–552 (2008). https://doi.org/10.1038/nature06560

    Article  Google Scholar 

  136. Ong, L.L., Hanikel, N., Yaghi, O.K., et al.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017). https://doi.org/10.1038/nature24648

    Article  Google Scholar 

  137. Orgel, L.E.: The origin of life on the earth. Sci. Am. 271, 76–83 (1994)

    Article  Google Scholar 

  138. Orgel, L.E.: The origin of life—a review of facts and speculations. Trends Biochem. Sci. 23, 491–495 (2018). https://doi.org/10.1016/S0968-0004(98)01300-0

    Article  Google Scholar 

  139. Ouldridge, T.E., Hoare, R.L., Louis, A.A., et al.: Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker. ACS Nano 7, 2479–2490 (2013). https://doi.org/10.1021/nn3058483

    Article  Google Scholar 

  140. Oyarzún, B., Mognetti, B.M.: Efficient sampling of reversible cross-linking polymers: self-assembly of single-chain polymeric nanoparticles. J. Chem. Phys. 148, 114110 (2018). https://doi.org/10.1063/1.5020158

    Article  Google Scholar 

  141. Park, S.Y., Lytton-Jean, A.K.R., Lee, B., et al.: DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008). https://doi.org/10.1038/nature06508

    Article  Google Scholar 

  142. Park, N., Um, S.H., Funabashi, H., et al.: A cell-free protein-producing gel. Nat. Mater. 8, 432–437 (2009). https://doi.org/10.1038/nmat2419

    Article  Google Scholar 

  143. Parolini, L., Kotar, J., Di Michele, L., Mognetti, B.M.: Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano 10, 2392–2398 (2016). https://doi.org/10.1021/acsnano.5b07201

    Article  Google Scholar 

  144. Paukstelis, P.J.: Three-dimensional DNA crystals as molecular sieves. J. Am. Chem. Soc. 128, 6794–6795 (2006). https://doi.org/10.1021/ja061322r

    Article  Google Scholar 

  145. Pontani, L.-L., Jorjadze, I., Viasnoff, V., Brujic, J.: Biomimetic emulsions reveal the effect of mechanical forces on cell–cell adhesion. Proc. Natl. Acad. Sci. 109, 9839 LP-9844 (2012) https://doi.org/10.1073/pnas.1201499109

    Article  Google Scholar 

  146. Praetorius, F., Kick, B., Behler, K.L., et al.: Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017). https://doi.org/10.1038/nature24650

    Article  Google Scholar 

  147. Prins, L.J., Haag, R.: Multivalency. Wiley Blackwell (2018)

    Google Scholar 

  148. Proske, D., Blank, M., Buhmann, R., Resch, A.: Aptamers—basic research, drug development, and clinical applications. Appl. Microbiol. Biotechnol. 69, 367–374 (2005). https://doi.org/10.1007/s00253-005-0193-5

    Article  Google Scholar 

  149. Qi, S.Y., Groves, J.T., Chakraborty, A.K.: Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. U. S. A. 98, 6548–6553 (2001). https://doi.org/10.1073/pnas.111536798

    Article  Google Scholar 

  150. Rajasekaran, S.A., Anilkumar, G., Oshima, E., et al.: A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell 14, 4835–4845 (2003). https://doi.org/10.1091/mbc.E02-11-0731

    Article  Google Scholar 

  151. Ramakrishnan, N., Tourdot, R.W., Eckmann, D.M., et al.: Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors. R. Soc. Open Sci. 3, 1–21 (2016). https://doi.org/10.1098/rsos.160260

    Article  MathSciNet  Google Scholar 

  152. Rao, J., Lahiri, J., Isaacs, L., et al.: A trivalent system from vancomycin-D-Ala-D-Ala with higher affinity than avidin-biotin. Science 280, 708–711 (1998). https://doi.org/10.1126/science.280.5364.708

    Article  Google Scholar 

  153. Raychaudhuri, S., Chakraborty, A.K., Kardar, M.: Effective membrane model of the immunological synapse. Phys. Rev. Lett. 91, 1–4 (2003). https://doi.org/10.1103/PhysRevLett.91.208101

    Article  Google Scholar 

  154. Rogers, W.B., Crocker, J.C.: Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl. Acad. Sci. 108, 15687–15692 (2011). https://doi.org/10.1073/pnas.1109853108

    Article  Google Scholar 

  155. Rogers, W.B., Manoharan, V.N.: Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015). https://doi.org/10.1126/science.1259762

    Article  Google Scholar 

  156. Romano, F., Sciortino, F.: Switching bonds in a DNA gel: an all-DNA vitrimer. Phys. Rev. Lett. 114(78104), 1–5 (2015). https://doi.org/10.1103/PhysRevLett.114.078104

    Article  Google Scholar 

  157. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006). https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  158. Rovigatti, L., Bomboi, F., Sciortino, F.: Accurate phase diagram of tetravalent DNA nanostars. J. Chem. Phys. 140(154903), 1–10 (2014). https://doi.org/10.1063/1.4870467

    Article  Google Scholar 

  159. Rovigatti, L., Smallenburg, F., Romano, F., Sciortino, F.: Gels of DNA nanostars never crystallize. ACS Nano 8, 3567–3574 (2014). https://doi.org/10.1021/nn501138w

    Article  Google Scholar 

  160. Rozenblum, G.T., Lopez, V.G., Vitullo, A.D., Radrizzani, M.: Aptamers: current challenges and future prospects. Expert Opin. Drug Discov. 11, 127–135 (2016). https://doi.org/10.1517/17460441.2016.1126244

    Article  Google Scholar 

  161. Saccà, B., Niemeyer, C.M.: DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012). https://doi.org/10.1002/anie.201105846

    Article  Google Scholar 

  162. SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95, 1460–1465 (1998). https://doi.org/10.1073/pnas.95.4.1460

    Article  Google Scholar 

  163. SantaLucia, J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004). https://doi.org/10.1146/annurev.biophys.32.110601.141800

    Article  Google Scholar 

  164. Sarvestani, A.S.: The effect of substrate rigidity on the assembly of specific bonds at biological interfaces. Soft Matter 9, 5927–5932 (2013). https://doi.org/10.1039/C3SM00036B

    Article  Google Scholar 

  165. Savory, N., Nzakizwanayo, J., Abe, K., et al.: Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J. Microbiol. Methods 104, 94–100 (2014). https://doi.org/10.1016/j.mimet.2014.06.016

    Article  Google Scholar 

  166. Schubertová, V., Martinez-Veracoechea, F.J., Vácha, R.: Design of multivalent inhibitors for preventing cellular uptake. Sci. Rep. 7, 1–7 (2017). https://doi.org/10.1038/s41598-017-11735-7

    Article  Google Scholar 

  167. Seeman, N.C.: DNA Nanotechnology. WTEC Workshop Report R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States, vol. 3, pp. 177–180 (1998). https://doi.org/10.1007/978-1-61779-142-0

    Google Scholar 

  168. Seifert, U., Lipowsky, R.: Adhesion of vesicles. Phys. Rev. A 42, 4768–4771 (1990). https://doi.org/10.1103/PhysRevA.42.4768

    Article  Google Scholar 

  169. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). https://doi.org/10.1126/science.1058847

    Article  Google Scholar 

  170. Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108

    Article  Google Scholar 

  171. Shimobayashi, S.F., Mognetti, B.M., Parolini, L., et al.: Direct measurement of DNA-mediated adhesion between lipid bilayers. Phys. Chem. Chem. Phys. 17, 15615–15628 (2015). https://doi.org/10.1039/C5CP01340B

    Article  Google Scholar 

  172. Sievers, E.L., Senter, P.D.: Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013). https://doi.org/10.1146/annurev-med-050311-201823

    Article  Google Scholar 

  173. Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007). https://doi.org/10.1016/j.metmat.2007.02.003

    Article  Google Scholar 

  174. Snodin, B.E.K., Romano, F., Rovigatti, L., et al.: Direct simulation of the self-assembly of a small DNA origami. ACS Nano 10, 1724–1737 (2016). https://doi.org/10.1021/acsnano.5b05865

    Article  Google Scholar 

  175. So-Jung, P., Anne, A.L., Chad, A.M., et al.: The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Ed. 39, 3845–3848 (2000). https://doi.org/10.1002/1521-3773(20001103)39:21%3c3845:aid-anie3845%3e3.0.co;2-o

    Article  Google Scholar 

  176. Song, D., Yang, R., Wang, C., et al.: Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep22870

    Article  Google Scholar 

  177. St John, A., Price, C.P.: Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35, 155–167 (2014). PMC4204237

    Google Scholar 

  178. Storhoff, J.J., Elghanian, R., Mucic, R.C., et al.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998). https://doi.org/10.1021/ja972332i

    Article  Google Scholar 

  179. Storhoff, J.J., Mirkin, C.A.: Programmed materials synthesis with DNA. Chem. Rev. 99, 1849–1862 (1999). https://doi.org/10.1021/cr970071p

    Article  Google Scholar 

  180. Sullenger, B.A.: Aptamers coming of age at twenty-five. Nucleic Acid Ther. 26, 119 (2016). https://doi.org/10.1089/nat.2016.29001.sul

    Article  Google Scholar 

  181. Sun, H., Zhu, X., Lu, P.Y., et al.: Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol. Ther. Nucleic Acids 3, 1–14 (2014). https://doi.org/10.1038/mtna.2014.32

    Article  Google Scholar 

  182. Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017). https://doi.org/10.1038/nature24655

    Article  Google Scholar 

  183. Tkachenko, A.V., Maslov, S.: Spontaneous emergence of autocatalytic information-coding polymers. J. Chem. Phys. 143(45102), 1–8 (2015). https://doi.org/10.1063/1.4922545

    Article  Google Scholar 

  184. Tombelli, S., Minunni, M., Mascini, M.: Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 24, 191–200 (2007). https://doi.org/10.1016/j.bioeng.2007.03.003

    Article  Google Scholar 

  185. Troian-Gautier, L., Valkenier, H., Mattiuzzi, A., et al.: Extremely robust and post-functionalizable gold nanoparticles coated with calix[4]arenes via metal-carbon bonds. Chem. Commun. 52, 10493–10496 (2016). https://doi.org/10.1039/C6CC04534K

    Article  Google Scholar 

  186. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). https://doi.org/10.1126/science.2200121

    Article  Google Scholar 

  187. Um, S.H., Lee, J.B., Park, N., et al.: Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006). https://doi.org/10.1038/nmat1741

    Article  Google Scholar 

  188. Valignat, M.-P., Theodoly, O., Crocker, J.C., et al.: Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl. Acad. Sci. 102, 4225–4229 (2005). https://doi.org/10.1073/pnas.0500507102

    Article  Google Scholar 

  189. Varilly, P., Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D.: A general theory of DNA-mediated and other valence-limited colloidal interactions. J. Chem. Phys. 137, 1–15 (2012). https://doi.org/10.1063/1.4748100

    Article  Google Scholar 

  190. Ventola, C.L.: Mobile devices and apps for health care professionals: uses and benefits. Pharm. Ther. 39, 356–64 (2014). PMC4029126

    Google Scholar 

  191. Wang, Y., Breed, D.R., Manoharan, V.N., et al.: Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012). https://doi.org/10.1038/nature11564

    Article  Google Scholar 

  192. Wang, S., Dormidontova, E.E.: Selectivity of ligand-receptor interactions between nanoparticle and cell surfaces. Phys. Rev. Lett. 109, 1–5 (2012). https://doi.org/10.1103/PhysRevLett.109.238102

    Article  Google Scholar 

  193. Wang, Y., Jenkins, I.C., McGinley, J.T., et al.: Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 1–8 (2017). https://doi.org/10.1038/ncomms14173

    Article  Google Scholar 

  194. Wang, Y., Wang, Y., Zheng, X., et al.: Crystallization of DNA-coated colloids. Nat Commun 6, 1–8 (2015). https://doi.org/10.1038/ncomms8253

    Article  MathSciNet  Google Scholar 

  195. Wang, Y., Wang, Y., Zheng, X., et al.: Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015). https://doi.org/10.1021/jacs.5b06607

    Article  Google Scholar 

  196. Watson, J.D., Crick, F.H.: The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18, 123–131 (1953). https://doi.org/10.1101/SQB.1953.018.01.020

    Article  Google Scholar 

  197. Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J.: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Controlled Release 200, 138–157 (2015). https://doi.org/10.1016/j.jconrel.2014.12.030

    Article  Google Scholar 

  198. Wilhelm, S., Tavares, A.J., Dai, Q., et al.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.14

    Article  Google Scholar 

  199. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998). https://doi.org/10.1038/28998

    Article  Google Scholar 

  200. Wu, D., Wang, L., Li, W., et al.: DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int. J. Pharm. 533, 169–178 (2017). https://doi.org/10.1016/j.ijpharm.2017.09.032

    Article  Google Scholar 

  201. Xiong, H., Van Der Lelie, D., Gang, O.: Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102(15504), 1–4 (2009). https://doi.org/10.1103/PhysRevLett.102.015504

    Article  Google Scholar 

  202. Xu, G.K., Hu, J., Lipowsky, R., Weikl, T.R.: Binding constants of membrane-anchored receptors and ligands: a general theory corroborated by Monte Carlo simulations. J. Chem. Phys. 143(243136), 1–16 (2015). https://doi.org/10.1063/1.4936134

    Article  Google Scholar 

  203. Yih, T.C., Al-Fandi, M.: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97, 1184–1190 (2006). https://doi.org/10.1002/jcb.20796

    Article  Google Scholar 

  204. Yoo, J., Aksimentiev, A.: In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc. Natl. Acad. Sci. 110, 20099–20104 (2013). https://doi.org/10.1073/pnas.1316521110

    Article  Google Scholar 

  205. Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M.P.N.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2010). https://doi.org/10.1002/jcc.21596

    Article  Google Scholar 

  206. Zahid, M., Kim, B., Hussain, R., et al.: DNA nanotechnology: a future perspective. Nanoscale Res. Lett. 8, 1–13 (2013). https://doi.org/10.1186/1556-276X-8-119

    Article  Google Scholar 

  207. Zanchetta, G., Lanfranco, R., Giavazzi, F., et al.: Emerging applications of label-free optical biosensors. Nanophotonics 6, 627–645 (2017). https://doi.org/10.1515/nanoph-2016-0158

    Article  Google Scholar 

  208. Zenk, J., Tuntivate, C., Schulman, R.: Kinetics and thermodynamics of Watson-Crick base pairing driven DNA origami dimerization. J. Am. Chem. Soc. 138, 3346–3354 (2016). https://doi.org/10.1021/jacs.5b10502

    Article  Google Scholar 

  209. Zhang, S., Li, J., Lykotrafitis, G., et al.: Size-dependent endocytosis of nanoparticles. Adv. Mater. 21, 419–424 (2009). https://doi.org/10.1002/adma.200801393

    Article  Google Scholar 

  210. Zhang, Y., Lu, F., Yager, K.G., et al.: A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865–872 (2013). https://doi.org/10.1038/nnano.2013.209

    Article  Google Scholar 

  211. Zhang, Y., McMullen, A., Pontani, L.L., et al.: Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8, 1–7 (2017). https://doi.org/10.1038/s41467-017-00070-0

    Article  Google Scholar 

  212. Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014). https://doi.org/10.1021/ja505101a

    Article  Google Scholar 

  213. Zhao, Y.-X., Shaw, A., Zeng, X., et al.: DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012). https://doi.org/10.1021/nn3022662

    Article  Google Scholar 

  214. Zhdanov V.P.: Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane. Phys. Rev. E 96, 012408 (2017)

    Google Scholar 

  215. Zhou, J., Rossi, J.: Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017). https://doi.org/10.1038/nrd.2016.199

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge The Wiener-Anspach foundation for financial support. BMM was supported by the Fonds de la Recherche Scientifique de Belgique—FNRS under grant n° MIS F.4534.17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Bruylants .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lanfranco, R., Mognetti, B.M., Bruylants, G. (2019). Achieving Selective Targeting Using Engineered Nanomaterials. In: Demetzos, C., Pippa, N. (eds) Thermodynamics and Biophysics of Biomedical Nanosystems. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0989-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0989-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0988-5

  • Online ISBN: 978-981-13-0989-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics