Achieving Selective Targeting Using Engineered Nanomaterials

  • Roberta Lanfranco
  • Bortolo M. Mognetti
  • Gilles BruylantsEmail author
Part of the Series in BioEngineering book series (SERBIOENG)


The development of Drug Delivery Systems (DDS) able to selectively deliver a controlled amount of a drug only to diseased cells would represent a dramatic development in nanomedicine. One of the multiple challenges still paving the way towards this goal is the elaboration of strategies that would allow targeting with extreme accuracy specific cells, as cancerous cells, among a large variety of closely related ones. In this work, we review the most recent nanotechnology applications aiming at controlling the selectivity of the interaction of delivery nanosystems with cells, with a focus on multivalent targeting. We briefly review thermodynamic models of multivalent interactions and highlight the challenges that still need to be addressed to transfer theoretical design principles into practical applications. In particular, suitable experimental systems based on multivalent models often require the control of the nanocarrier characteristics at the molecular level. Traditional delivery methods, however, fail to provide such degree of control. DNA nanotechnology is a growing field of nanoscience that has witnessed impressive developments in the past decades and has led to major advances in the fabrication of nanostructures and self-assembled systems. Relying on the possibility of controlling their molecular interactions by sequence design, nucleic acids can serve the drug delivery program by providing desired nanostructures with nearly atomic precision. In combination with the recent achievements in the research on DNA aptamers, short nucleic acid sequences isolated to interact selectively with a specific target, DNA nanotechnology is undoubtedly one of the most promising tools for the development of selective DDS.



The authors acknowledge The Wiener-Anspach foundation for financial support. BMM was supported by the Fonds de la Recherche Scientifique de Belgique—FNRS under grant n° MIS F.4534.17.


  1. 1.
    Abel, G.: Current status and future prospects of point-of-care testing around the globe. Expert Rev. Mol. Diagn. 15, 853–855 (2015). Scholar
  2. 2.
    Alibolandi, M., Ramezani, M., Abnous, K., et al.: In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J. Controlled Release 209, 88–100 (2015). Scholar
  3. 3.
    Alivisatos, A.P., Johnsson, K.P., Peng, X., et al.: Organization of “nanocrystal molecules” using DNA. Nature 382, 609–611 (1996). Scholar
  4. 4.
    Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013). Scholar
  5. 5.
    Amjad, O.A., Mognetti, B.M., Cicuta, P., Di Michele, L.: Membrane adhesion through bridging by multimeric ligands. Langmuir 33, 1139–1146 (2017). Scholar
  6. 6.
    Andersen, E.S., Dong, M., Nielsen, M.M., et al.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009). Scholar
  7. 7.
    Angioletti-Uberti, S.: Exploiting receptor competition to enhance nanoparticle binding selectivity. Phys. Rev. Lett. 118, 1–5 (2017). Scholar
  8. 8.
    Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D.: Re-entrant melting as a design principle for DNA-coated colloids. Nat. Mater. 11, 518–522 (2012). Scholar
  9. 9.
    Angioletti-Uberti, S., Varilly, P., Mognetti, B.M., et al.: Communication: a simple analytical formula for the free energy of ligand-receptor-mediated interactions. J. Chem. Phys. 138, 0211021–0211024 (2013). Scholar
  10. 10.
    Arundhati, G., Heston, W.D.W.: Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem. 91, 528–539 (2003). Scholar
  11. 11.
    Auyeung, E., Li, T.I.N.G., Senesi, A.J., et al.: DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014). Scholar
  12. 12.
    Baaske, M.D., Foreman, M.R., Vollmer, F.: Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014). Scholar
  13. 13.
    Bachmann, S.J., Kotar, J., Parolini, L., et al.: Melting transition in lipid vesicles functionalised by mobile DNA linkers. Soft Matter 12, 7804–7817 (2016). Scholar
  14. 14.
    Bachmann, S.J., Petitzon, M., Mognetti, B.M.: Bond formation kinetics affects self-assembly directed by ligand–receptor interactions. Soft Matter 12, 9585–9592 (2016). Scholar
  15. 15.
    Baker, B.R., Lai, R.Y., Wood, M.S., et al.: An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128, 3138–3139 (2006). Scholar
  16. 16.
    Banga, R.J., Chernyak, N., Narayan, S.P., et al.: Liposomal spherical nucleic acids. J. Am. Chem. Soc. 136(28), 9866–9869 (2014). Scholar
  17. 17.
    Beales, P.A., Vanderlick, T.K.: Partitioning of membrane-anchored DNA between coexisting lipid phases. J. Phys. Chem. B 113, 13678–13686 (2009). Scholar
  18. 18.
    Bell, G.I., Dembo, M., Bongrand, P.: Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45, 1051–1064 (1984). Scholar
  19. 19.
    Bell, N.A.W., Keyser, U.F.: Nanopores formed by DNA origami: a review. FEBS Lett. 588, 3564–3570 (2014). Scholar
  20. 20.
    Biffi, S., Cerbino, R., Bomboi, F., et al.: Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proc. Natl. Acad. Sci. 110, 15633–15637 (2013). Scholar
  21. 21.
    Biffi, S., Cerbino, R., Nava, G., et al.: Equilibrium gels of low-valence DNA nanostars: a colloidal model for strong glass formers. Soft Matter 11, 3132–3138 (2015). Scholar
  22. 22.
    Björnmalm, M., Thurecht, K.J., Michael, M., et al.: Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017). Scholar
  23. 23.
    Boal, A.K., Ilhan, F., Derouchey, J.E., et al.: Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000). Scholar
  24. 24.
    Bock, L.C., Griffin, L.C., Latham, J.A., et al.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992). Scholar
  25. 25.
    Boltasseva, A., Shalaev, V.M.: Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2, 1–17 (2008). Scholar
  26. 26.
    Bomboi, F., Biffi, S., Cerbino, R., et al.: Equilibrium gels of trivalent DNA-nanostars: effect of the ionic strength on the dynamics. Eur. Phys. J. E 38, 64–69 (2015). Scholar
  27. 27.
    Bomboi, F., Romano, F., Leo, M., et al.: Re-entrant DNA gels. Nat. Commun. 7, 1–6 (2016). Scholar
  28. 28.
    Brady, R.A., Brooks, N.J., Cicuta, P., Di Michele, L.: Crystallization of amphiphilic DNA C-Stars. Nano Lett. 17(5), 3276–3281 (2017). Scholar
  29. 29.
    Bunka, D.H.J., Stockley, P.G.: Aptamers come of age—at last. Nat. Rev. Microbiol. 4, 588–596 (2006). Scholar
  30. 30.
    Burke, D.H., Gold, L.: RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 25, 2020–2024 (1997)CrossRefGoogle Scholar
  31. 31.
    Cangialosi, A., Yoon, C.K., Liu, J., et al.: DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017). Scholar
  32. 32.
    Cao, Y.W., Jin, R., Mirkin, C.A.: DNA-modified core–shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961–7962 (2001). Scholar
  33. 33.
    Cao, X., Li, S., Chen, L., et al.: Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628 (2009). Scholar
  34. 34.
    Castro, C.E., Kilchherr, F., Kim, D.N., et al.: A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011). Scholar
  35. 35.
    Cerchia, L., de Franciscis, V.: Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 28, 517–525 (2018). Scholar
  36. 36.
    Chang, Y.-C., Yang, C.-Y., Sun, R.-L., et al.: Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3, 1863–1870 (2013). Scholar
  37. 37.
    Cheifetz, A., Mayer, L.: Monoclonal antibodies, immunogenicity, and associated infusion reactions. Mt. Sinai J. Med. 72, 250–256 (2005)Google Scholar
  38. 38.
    Chen, H.Y.: Adhesion-induced phase separation of multiple species of membrane junctions. Phys. Rev. E 67, 1–10 (2003). Scholar
  39. 39.
    Chen, Y.J., Groves, B., Muscat, R.A., Seelig, G.: DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015). Scholar
  40. 40.
    Chester, K., Pedley, B., Tolner, B., et al.: Engineering antibodies for clinical applications in cancer. Tumor Biol 25, 91–98 (2004). Scholar
  41. 41.
    Collier, C.P., Vossmeyer, T., Heath, J.R.: Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998). Scholar
  42. 42.
    Coombs, D., Dembo, M., Wofsy, C., Goldstein, B.: Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. Biophys. J. 86, 1408–1423 (2004). Scholar
  43. 43.
    Cox, J.C., Hayhurst, A., Hesselberth, J., et al.: Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108–e108 PMC137152 (2002)Google Scholar
  44. 44.
    Curk, T., Dobnikar, J., Frenkel, D.: Optimal multivalent targeting of membranes with many distinct receptors. Proc. Natl. Acad. Sci. 114, 7210–7215 (2017). Scholar
  45. 45.
    Cutler, J.I., Auyeung, E., Mirkin, C.A.: Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012). Scholar
  46. 46.
    Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004). Scholar
  47. 47.
    Daniels, D.A., Chen, H., Hicke, B.J., et al.: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. U. S. A. 100, 15416–15421 (2003). Scholar
  48. 48.
    Dave, N., Liu, J.: Programmable assembly of DNA-functionalized liposomes by DNA. ACS Nano 5, 1304–1312 (2011). Scholar
  49. 49.
    de Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press (1974)Google Scholar
  50. 50.
    Decuzzi, P., Ferrari, M.: The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008). Scholar
  51. 51.
    Demetzos, C., Pippa, N.: Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 21, 250–257 (2014). Scholar
  52. 52.
    Di Michele, L., Jana, P.K., Mognetti, B.M.: Ligand mobility suppresses membrane wrapping in passive endocytosis (2017). ArXiv ID 1708.03733Google Scholar
  53. 53.
    Ding, F., Guo, S., Xie, M., et al.: Diagnostic applications of gastric carcinoma cell aptamers in vitro and in vivo. Talanta 134, 30–36 (2015). Scholar
  54. 54.
    Dirks, R.M., Bois, J.S., Schaeffer, J.M., et al.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49, 65–88 (2007). Scholar
  55. 55.
    Doyen, M., Bartik, K., Bruylants, G.: UV–Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold–citrate aggregates. J. Colloid Interface Sci. 399, 1–5 (2013). Scholar
  56. 56.
    Dreyfus, R., Leunissen, M.E., Sha, R., et al.: Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81, 1–10 (2010). Scholar
  57. 57.
    Dua, P., Kim, S., Lee, D.: Nucleic acid aptamers targeting cell-surface proteins. Methods 54, 215–225 (2011). Scholar
  58. 58.
    Dubacheva, G.V., Curk, T., Auzély-Velty, R., et al.: Designing multivalent probes for tunable superselective targeting. Proc. Natl. Acad. Sci. 112, 5579–5584 (2015). Scholar
  59. 59.
    Dubacheva, G.V., Curk, T., Mognetti, B.M., et al.: Superselective targeting using multivalent polymers. J. Am. Chem. Soc. 136, 1722–1725 (2014). Scholar
  60. 60.
    Dubertret, B., Calame, M., Libchaber, A.J.: Single-mismatch detection using gold-quenched fluorescent oligonucleotides (vol. 19, p. 365, 2001). Nat. Biotechnol. 19, 680–681 (2001). Scholar
  61. 61.
    Duncan, G.A., Bevan, M.A.: Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale 7, 15332–15340 (2015). Scholar
  62. 62.
    Elghanian, R.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997). Scholar
  63. 63.
    Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990). Scholar
  64. 64.
    Farokhzad, O.C., Cheng, J., Teply, B.A., et al.: Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006). Scholar
  65. 65.
    Farokhzad, O.C., Karp, J.M., Langer, R.: Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 3, 311–324 (2006).Google Scholar
  66. 66.
    Fernandez-Castanon, J., Bomboi, F., Rovigatti, L., et al.: Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars. J. Chem. Phys. 145(84910), 1–7 (2016). Scholar
  67. 67.
    Fraccia, T.P., Smith, G.P., Bethge, L., et al.: Liquid crystal ordering and isotropic gelation in solutions of four-base-long DNA oligomers. ACS Nano 10, 8508–8516 (2016). Scholar
  68. 68.
    Fraccia, T.P., Smith, G.P., Zanchetta, G., et al.: Abiotic ligation of DNA oligomers templated by their liquid crystal ordering. Nat. Commun. 6, 1–7 (2015). Scholar
  69. 69.
    Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. U. S. A. 102, 9469–9474 (2005). Scholar
  70. 70.
    Gehrels, E.W., Rogers, W.B., Manoharan, V.N.: Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matter 14, 969–984 (2018). Scholar
  71. 71.
    Gestwicki, J.E., Cairo, C.W., Strong, L.E., et al.: Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002). Scholar
  72. 72.
    Gold, L., Janjic, N., Jarvis, T., et al.: Aptamers and the RNA world, past and present. Cold Spring Harb. Perspect. Biol. 4, 1–11 (2012). Scholar
  73. 73.
    Gothelf, K.V.: LEGO-like DNA structures. Science 338, 1159–1160 (2012). Scholar
  74. 74.
    Grzybowski, B.A., Huck, W.T.S.: The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016). Scholar
  75. 75.
    Günter, M.: The chemical biology of aptamers. Angew. Chem. Int. Ed. 48, 2672–2689 (2009). Scholar
  76. 76.
    Hamaguchi, N., Ellington, A., Stanton, M.: Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001). Scholar
  77. 77.
    Han, D., Pal, S., Nangreave, J., et al.: DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011). Scholar
  78. 78.
    Herr, J.K., Smith, J.E., Medley, C.D., et al.: Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006). Scholar
  79. 79.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977). Scholar
  80. 80.
    Hongguang, S., Youli, Z.: Aptamers and their applications in nanomedicine. Small 11, 2352–2364 (2015). Scholar
  81. 81.
    Houk, N.K., Leach, G.A., Kim, P.S., Zhang, X.: Binding affinities of host-guest, protein-ligand, and protein–transition-state complexes. Angew. Chem. Int. Ed. 42, 4872–4897 (2003). Scholar
  82. 82.
    Hu, J., Lipowsky, R., Weikl, T.R.: Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. Proc. Natl. Acad. Sci. 110, 15283–15288 (2013). Scholar
  83. 83.
    Hu, Q., Li, H., Wang, L., et al.: DNA nanotechnology-enabled drug delivery systems. Chem. Rev. (2018).
  84. 84.
    Huizenga, D.E., Szostak, J.W.: A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995). Scholar
  85. 85.
    Jabbari, H., Aminpour, M., Montemagno, C.: Computational approaches to nucleic acid origami. ACS Comb Sci 17, 535–547 (2015). Scholar
  86. 86.
    Jacobs, W.M., Reinhardt, A., Frenkel, D.: Communication: Theoretical prediction of free-energy landscapes for complex self-assembly. J. Chem. Phys. 142, 1–5 (2015). Scholar
  87. 87.
    Jacobson, K., Ishihara, A., Inman, R.: Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49, 163–175 (1987). Scholar
  88. 88.
    Jiang, Q., Song, C., Nangreave, J., et al.: DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012). Scholar
  89. 89.
    Jones, M.R., Seeman, N.C., Mirkin, C.A.: Programmable materials and the nature of the DNA bond. Science 347, 1–11 (2015). Scholar
  90. 90.
    Joshi, D., Bargteil, D., Caciagli, A., et al.: Kinetic control of the coverage of oil droplets by DNA-functionalized colloids. Sci. Adv. 2, 1–9 (2016). Scholar
  91. 91.
    Joshi, R., Janagama, H., Dwivedi, H.P., et al.: Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23, 20–28 (2009). Scholar
  92. 92.
    Ke, P.C., Lin, S., Parak, W.J., et al.: A decade of the protein corona. ACS Nano 11, 11773–11776 (2017). Scholar
  93. 93.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012). Scholar
  94. 94.
    Ke, Y., Ong, L.L., Sun, W., et al.: DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014). Scholar
  95. 95.
    Keefe, A.D., Pai, S., Ellington, A.: Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010). Scholar
  96. 96.
    Kim, A.J., Biancaniello, P.L., Crocker, J.C.: Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006). Scholar
  97. 97.
    Kim, Y.S., Chung, J., Song, M.Y., et al.: Aptamer cocktails: Enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens. Bioelectron. 54, 195–198 (2014). Scholar
  98. 98.
    Kim, Y.S., Song, M.Y., Jurng, J., Kim, B.C.: Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal. Biochem. 436, 22–28 (2013). Scholar
  99. 99.
    Kimoto, M., Yamashige, R., Matsunaga, K.I., et al.: Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013). Scholar
  100. 100.
    Kitov, P.I., Bundle, D.R.: On the nature of the multivalency effect: a thermodynamic model. J. Am. Chem. Soc. 125, 16271–16284 (2003). Scholar
  101. 101.
    Kitov, P.I., Sadowska, J.M., Mulvey, G., et al.: Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000). Scholar
  102. 102.
    Kryza, D., Debordeaux, F., Azéma, L., et al.: Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 1, 16. (February 22)CrossRefGoogle Scholar
  103. 103.
    LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003). Scholar
  104. 104.
    Lanfranco, R., Giavazzi, F., Salina, M., et al.: Selective adsorption on fluorinated plastic enables the optical detection of molecular pollutants in water. Phys. Rev. Appl. 5, 1–15 (2016). Scholar
  105. 105.
    Lanfranco, R., Saez, J., Di Nicolò, E., et al.: Phantom membrane microfluidic cross-flow filtration device for the direct optical detection of water pollutants. Sens. Actuators B Chem. 257, 924–930 (2018). Scholar
  106. 106.
    Lee, J.F.: Aptamer database. Nucleic Acids Res. 32, 95D–100 (2004). Scholar
  107. 107.
    Lee, J.B., Peng, S., Yang, D., et al.: A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 7, 816–820 (2012). Scholar
  108. 108.
    Lee, J.F., Stovall, G.M., Ellington, A.D.: Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282–289 (2006). Scholar
  109. 109.
    Li, D., Qu, L., Zhai, W., et al.: Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 45, 4046–4052 (2011). Scholar
  110. 110.
    Licata, N.A., Tkachenko, A.V.: Kinetic limitations of cooperativity-based drug delivery systems. Phys. Rev. Lett. 100, 1–4 (2008). Scholar
  111. 111.
    Liu, H., He, Y., Ribbe, A.E., Mao, C.: Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules 6, 2943–2945 (2005). Scholar
  112. 112.
    Liu, F., Sha, R., Seeman, N.C.: Modifying the surface features of two-dimensional DNA crystals. J. Am. Chem. Soc. 121, 917–922 (1999). Scholar
  113. 113.
    Liu, D., Wang, Z., Jiang, X.: Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3, 1421–1433 (2011). Scholar
  114. 114.
    Liu, Y., Zhang, X.: Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011). Scholar
  115. 115.
    Lo, P.K., Metera, K.L., Sleiman, H.F.: Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Curr. Opin. Chem. Biol. 14, 597–607 (2010). Scholar
  116. 116.
    Lowe, J.N., Fulton, D.A., Chiu, S.H., et al.: Polyvalent interactions in unnatural recognition processes. J. Org. Chem. 69, 4390–4402 (2004). Scholar
  117. 117.
    Loweth, C.J., Caldwell, W.B., Peng, X., et al.: DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38, 1808–1812 (1999).;2-CCrossRefGoogle Scholar
  118. 118.
    Macfarlane, R.J., Lee, B., Jones, M.R., et al.: Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011). Scholar
  119. 119.
    Mammen, M., Choi, S.K., Whitesides, G.M.: Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).;2-3CrossRefGoogle Scholar
  120. 120.
    Mammen, M., Dahmann, G., Whitesides, G.M.: Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J. Med. Chem. 38, 4179–4190 (1995). Scholar
  121. 121.
    Marangoni, K., Neves, A.F., Rocha, R.M., et al.: Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Nat. Publ. Gr. 5, 1–13 (2015). Scholar
  122. 122.
    Marchi, A.N., Saaem, I., Vogen, B.N., et al.: Toward larger DNA origami. Nano Lett. 14, 5740–5747 (2014). Scholar
  123. 123.
    Martinez-Veracoechea, F.J., Frenkel, D.: Designing super selectivity in multivalent nano-particle binding. Proc. Natl. Acad. Sci. 108, 10963–10968 (2011). Scholar
  124. 124.
    Maye, M.M., Nykypanchuk, D., van der Lelie, D., Gang, O.: DNA-regulated micro- and nanoparticle assembly. Small 3, 1678–1682 (2007). Scholar
  125. 125.
    Mi, J., Ray, P., Liu, J., et al.: In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther. Nucleic Acids 5, e315 (2016). Scholar
  126. 126.
    Di Michele, L., Bachmann, S.J., Parolini, L., Mognetti, B.M.: Communication: free energy of ligand-receptor systems forming multimeric complexes. J. Chem. Phys. 144, 1–5 (2016). Scholar
  127. 127.
    Di Michele, L., Eiser, E.: Developments in understanding and controlling self assembly of DNA-functionalized colloids. Phys. Chem. Chem. Phys. 15, 3115–3129 (2013). Scholar
  128. 128.
    Milam, V.T., Hiddessen, A.L., Crocker, J.C., et al.: DNA-driven assembly of bidisperse, micron-sized colloids. Langmuir 19, 10317–10323 (2003). Scholar
  129. 129.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996). Scholar
  130. 130.
    Mognetti, B.M., Leunissen, M.E., Frenkel, D.: Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter 8, 2213–2221 (2012). Scholar
  131. 131.
    Mognetti, B.M., Varilly, P., Angioletti-Uberti, S., et al.: Predicting DNA-mediated colloidal pair interactions. Proc. Natl. Acad. Sci. 109(7), E378:E379 LP-E379 (2012b)Google Scholar
  132. 132.
    Nakata, M., Zanchetta, G., Chapman, B.D., et al.: End-to-end stacking and liquid crystal formation of 6- to 20-base pair DNA duplexes. Science 318, 1–4 (2009). Scholar
  133. 133.
    Narasimhan, B., Goodman, J.T., Vela Ramirez, J.E.: Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu. Rev. Biomed. Eng. 18, 25–49 (2016). Scholar
  134. 134.
    Niemeyer, C.M.: DNA as a material for nanotechnology. Angew Chemie Int Ed English 36, 585–587 (2003). Scholar
  135. 135.
    Nykypanchuk, D., Maye, M.M., van der Lelie, D., Gang, O.: DNA-guided crystallisation of colloidal nanoparticles. Nature 451, 549–552 (2008). Scholar
  136. 136.
    Ong, L.L., Hanikel, N., Yaghi, O.K., et al.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017). Scholar
  137. 137.
    Orgel, L.E.: The origin of life on the earth. Sci. Am. 271, 76–83 (1994)CrossRefGoogle Scholar
  138. 138.
    Orgel, L.E.: The origin of life—a review of facts and speculations. Trends Biochem. Sci. 23, 491–495 (2018). Scholar
  139. 139.
    Ouldridge, T.E., Hoare, R.L., Louis, A.A., et al.: Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker. ACS Nano 7, 2479–2490 (2013). Scholar
  140. 140.
    Oyarzún, B., Mognetti, B.M.: Efficient sampling of reversible cross-linking polymers: self-assembly of single-chain polymeric nanoparticles. J. Chem. Phys. 148, 114110 (2018). Scholar
  141. 141.
    Park, S.Y., Lytton-Jean, A.K.R., Lee, B., et al.: DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008). Scholar
  142. 142.
    Park, N., Um, S.H., Funabashi, H., et al.: A cell-free protein-producing gel. Nat. Mater. 8, 432–437 (2009). Scholar
  143. 143.
    Parolini, L., Kotar, J., Di Michele, L., Mognetti, B.M.: Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano 10, 2392–2398 (2016). Scholar
  144. 144.
    Paukstelis, P.J.: Three-dimensional DNA crystals as molecular sieves. J. Am. Chem. Soc. 128, 6794–6795 (2006). Scholar
  145. 145.
    Pontani, L.-L., Jorjadze, I., Viasnoff, V., Brujic, J.: Biomimetic emulsions reveal the effect of mechanical forces on cell–cell adhesion. Proc. Natl. Acad. Sci. 109, 9839 LP-9844 (2012) Scholar
  146. 146.
    Praetorius, F., Kick, B., Behler, K.L., et al.: Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017). Scholar
  147. 147.
    Prins, L.J., Haag, R.: Multivalency. Wiley Blackwell (2018)Google Scholar
  148. 148.
    Proske, D., Blank, M., Buhmann, R., Resch, A.: Aptamers—basic research, drug development, and clinical applications. Appl. Microbiol. Biotechnol. 69, 367–374 (2005). Scholar
  149. 149.
    Qi, S.Y., Groves, J.T., Chakraborty, A.K.: Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. U. S. A. 98, 6548–6553 (2001). Scholar
  150. 150.
    Rajasekaran, S.A., Anilkumar, G., Oshima, E., et al.: A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell 14, 4835–4845 (2003). Scholar
  151. 151.
    Ramakrishnan, N., Tourdot, R.W., Eckmann, D.M., et al.: Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors. R. Soc. Open Sci. 3, 1–21 (2016). Scholar
  152. 152.
    Rao, J., Lahiri, J., Isaacs, L., et al.: A trivalent system from vancomycin-D-Ala-D-Ala with higher affinity than avidin-biotin. Science 280, 708–711 (1998). Scholar
  153. 153.
    Raychaudhuri, S., Chakraborty, A.K., Kardar, M.: Effective membrane model of the immunological synapse. Phys. Rev. Lett. 91, 1–4 (2003). Scholar
  154. 154.
    Rogers, W.B., Crocker, J.C.: Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl. Acad. Sci. 108, 15687–15692 (2011). Scholar
  155. 155.
    Rogers, W.B., Manoharan, V.N.: Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015). Scholar
  156. 156.
    Romano, F., Sciortino, F.: Switching bonds in a DNA gel: an all-DNA vitrimer. Phys. Rev. Lett. 114(78104), 1–5 (2015). Scholar
  157. 157.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006). Scholar
  158. 158.
    Rovigatti, L., Bomboi, F., Sciortino, F.: Accurate phase diagram of tetravalent DNA nanostars. J. Chem. Phys. 140(154903), 1–10 (2014). Scholar
  159. 159.
    Rovigatti, L., Smallenburg, F., Romano, F., Sciortino, F.: Gels of DNA nanostars never crystallize. ACS Nano 8, 3567–3574 (2014). Scholar
  160. 160.
    Rozenblum, G.T., Lopez, V.G., Vitullo, A.D., Radrizzani, M.: Aptamers: current challenges and future prospects. Expert Opin. Drug Discov. 11, 127–135 (2016). Scholar
  161. 161.
    Saccà, B., Niemeyer, C.M.: DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012). Scholar
  162. 162.
    SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95, 1460–1465 (1998). Scholar
  163. 163.
    SantaLucia, J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004). Scholar
  164. 164.
    Sarvestani, A.S.: The effect of substrate rigidity on the assembly of specific bonds at biological interfaces. Soft Matter 9, 5927–5932 (2013). Scholar
  165. 165.
    Savory, N., Nzakizwanayo, J., Abe, K., et al.: Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J. Microbiol. Methods 104, 94–100 (2014). Scholar
  166. 166.
    Schubertová, V., Martinez-Veracoechea, F.J., Vácha, R.: Design of multivalent inhibitors for preventing cellular uptake. Sci. Rep. 7, 1–7 (2017). Scholar
  167. 167.
    Seeman, N.C.: DNA Nanotechnology. WTEC Workshop Report R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States, vol. 3, pp. 177–180 (1998). Scholar
  168. 168.
    Seifert, U., Lipowsky, R.: Adhesion of vesicles. Phys. Rev. A 42, 4768–4771 (1990). Scholar
  169. 169.
    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). Scholar
  170. 170.
    Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). Scholar
  171. 171.
    Shimobayashi, S.F., Mognetti, B.M., Parolini, L., et al.: Direct measurement of DNA-mediated adhesion between lipid bilayers. Phys. Chem. Chem. Phys. 17, 15615–15628 (2015). Scholar
  172. 172.
    Sievers, E.L., Senter, P.D.: Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013). Scholar
  173. 173.
    Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007). Scholar
  174. 174.
    Snodin, B.E.K., Romano, F., Rovigatti, L., et al.: Direct simulation of the self-assembly of a small DNA origami. ACS Nano 10, 1724–1737 (2016). Scholar
  175. 175.
    So-Jung, P., Anne, A.L., Chad, A.M., et al.: The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Ed. 39, 3845–3848 (2000).;2-oCrossRefGoogle Scholar
  176. 176.
    Song, D., Yang, R., Wang, C., et al.: Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci. Rep. 6, 1–9 (2016). Scholar
  177. 177.
    St John, A., Price, C.P.: Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35, 155–167 (2014). PMC4204237Google Scholar
  178. 178.
    Storhoff, J.J., Elghanian, R., Mucic, R.C., et al.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998). Scholar
  179. 179.
    Storhoff, J.J., Mirkin, C.A.: Programmed materials synthesis with DNA. Chem. Rev. 99, 1849–1862 (1999). Scholar
  180. 180.
    Sullenger, B.A.: Aptamers coming of age at twenty-five. Nucleic Acid Ther. 26, 119 (2016). Scholar
  181. 181.
    Sun, H., Zhu, X., Lu, P.Y., et al.: Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol. Ther. Nucleic Acids 3, 1–14 (2014). Scholar
  182. 182.
    Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017). Scholar
  183. 183.
    Tkachenko, A.V., Maslov, S.: Spontaneous emergence of autocatalytic information-coding polymers. J. Chem. Phys. 143(45102), 1–8 (2015). Scholar
  184. 184.
    Tombelli, S., Minunni, M., Mascini, M.: Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 24, 191–200 (2007). Scholar
  185. 185.
    Troian-Gautier, L., Valkenier, H., Mattiuzzi, A., et al.: Extremely robust and post-functionalizable gold nanoparticles coated with calix[4]arenes via metal-carbon bonds. Chem. Commun. 52, 10493–10496 (2016). Scholar
  186. 186.
    Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). Scholar
  187. 187.
    Um, S.H., Lee, J.B., Park, N., et al.: Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006). Scholar
  188. 188.
    Valignat, M.-P., Theodoly, O., Crocker, J.C., et al.: Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl. Acad. Sci. 102, 4225–4229 (2005). Scholar
  189. 189.
    Varilly, P., Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D.: A general theory of DNA-mediated and other valence-limited colloidal interactions. J. Chem. Phys. 137, 1–15 (2012). Scholar
  190. 190.
    Ventola, C.L.: Mobile devices and apps for health care professionals: uses and benefits. Pharm. Ther. 39, 356–64 (2014). PMC4029126Google Scholar
  191. 191.
    Wang, Y., Breed, D.R., Manoharan, V.N., et al.: Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012). Scholar
  192. 192.
    Wang, S., Dormidontova, E.E.: Selectivity of ligand-receptor interactions between nanoparticle and cell surfaces. Phys. Rev. Lett. 109, 1–5 (2012). Scholar
  193. 193.
    Wang, Y., Jenkins, I.C., McGinley, J.T., et al.: Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 1–8 (2017). Scholar
  194. 194.
    Wang, Y., Wang, Y., Zheng, X., et al.: Crystallization of DNA-coated colloids. Nat Commun 6, 1–8 (2015). Scholar
  195. 195.
    Wang, Y., Wang, Y., Zheng, X., et al.: Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015). Scholar
  196. 196.
    Watson, J.D., Crick, F.H.: The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18, 123–131 (1953). Scholar
  197. 197.
    Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J.: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Controlled Release 200, 138–157 (2015). Scholar
  198. 198.
    Wilhelm, S., Tavares, A.J., Dai, Q., et al.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 1–12 (2016). Scholar
  199. 199.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998). Scholar
  200. 200.
    Wu, D., Wang, L., Li, W., et al.: DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int. J. Pharm. 533, 169–178 (2017). Scholar
  201. 201.
    Xiong, H., Van Der Lelie, D., Gang, O.: Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102(15504), 1–4 (2009). Scholar
  202. 202.
    Xu, G.K., Hu, J., Lipowsky, R., Weikl, T.R.: Binding constants of membrane-anchored receptors and ligands: a general theory corroborated by Monte Carlo simulations. J. Chem. Phys. 143(243136), 1–16 (2015). Scholar
  203. 203.
    Yih, T.C., Al-Fandi, M.: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97, 1184–1190 (2006). Scholar
  204. 204.
    Yoo, J., Aksimentiev, A.: In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc. Natl. Acad. Sci. 110, 20099–20104 (2013). Scholar
  205. 205.
    Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M.P.N.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2010). Scholar
  206. 206.
    Zahid, M., Kim, B., Hussain, R., et al.: DNA nanotechnology: a future perspective. Nanoscale Res. Lett. 8, 1–13 (2013). Scholar
  207. 207.
    Zanchetta, G., Lanfranco, R., Giavazzi, F., et al.: Emerging applications of label-free optical biosensors. Nanophotonics 6, 627–645 (2017). Scholar
  208. 208.
    Zenk, J., Tuntivate, C., Schulman, R.: Kinetics and thermodynamics of Watson-Crick base pairing driven DNA origami dimerization. J. Am. Chem. Soc. 138, 3346–3354 (2016). Scholar
  209. 209.
    Zhang, S., Li, J., Lykotrafitis, G., et al.: Size-dependent endocytosis of nanoparticles. Adv. Mater. 21, 419–424 (2009). Scholar
  210. 210.
    Zhang, Y., Lu, F., Yager, K.G., et al.: A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865–872 (2013). Scholar
  211. 211.
    Zhang, Y., McMullen, A., Pontani, L.L., et al.: Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8, 1–7 (2017). Scholar
  212. 212.
    Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014). Scholar
  213. 213.
    Zhao, Y.-X., Shaw, A., Zeng, X., et al.: DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012). Scholar
  214. 214.
    Zhdanov V.P.: Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane. Phys. Rev. E 96, 012408 (2017)Google Scholar
  215. 215.
    Zhou, J., Rossi, J.: Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Roberta Lanfranco
    • 1
    • 2
  • Bortolo M. Mognetti
    • 3
  • Gilles Bruylants
    • 2
    Email author
  1. 1.Biological and Soft Systems, Department of PhysicsUniversity of CambridgeCambridgeUK
  2. 2.Engineering of Molecular NanoSystems, Chemistry and Material Science DepartmentUniversité libre de BruxellesBrusselsBelgium
  3. 3.Physics of Complex Systems and Statistical Mechanics, Department of PhysicsUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations