Advertisement

Achieving Selective Targeting Using Engineered Nanomaterials

  • Roberta Lanfranco
  • Bortolo M. Mognetti
  • Gilles BruylantsEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

The development of Drug Delivery Systems (DDS) able to selectively deliver a controlled amount of a drug only to diseased cells would represent a dramatic development in nanomedicine. One of the multiple challenges still paving the way towards this goal is the elaboration of strategies that would allow targeting with extreme accuracy specific cells, as cancerous cells, among a large variety of closely related ones. In this work, we review the most recent nanotechnology applications aiming at controlling the selectivity of the interaction of delivery nanosystems with cells, with a focus on multivalent targeting. We briefly review thermodynamic models of multivalent interactions and highlight the challenges that still need to be addressed to transfer theoretical design principles into practical applications. In particular, suitable experimental systems based on multivalent models often require the control of the nanocarrier characteristics at the molecular level. Traditional delivery methods, however, fail to provide such degree of control. DNA nanotechnology is a growing field of nanoscience that has witnessed impressive developments in the past decades and has led to major advances in the fabrication of nanostructures and self-assembled systems. Relying on the possibility of controlling their molecular interactions by sequence design, nucleic acids can serve the drug delivery program by providing desired nanostructures with nearly atomic precision. In combination with the recent achievements in the research on DNA aptamers, short nucleic acid sequences isolated to interact selectively with a specific target, DNA nanotechnology is undoubtedly one of the most promising tools for the development of selective DDS.

Notes

Acknowledgements

The authors acknowledge The Wiener-Anspach foundation for financial support. BMM was supported by the Fonds de la Recherche Scientifique de Belgique—FNRS under grant n° MIS F.4534.17.

References

  1. 1.
    Abel, G.: Current status and future prospects of point-of-care testing around the globe. Expert Rev. Mol. Diagn. 15, 853–855 (2015).  https://doi.org/10.1586/14737159.2015.1060126CrossRefGoogle Scholar
  2. 2.
    Alibolandi, M., Ramezani, M., Abnous, K., et al.: In vitro and in vivo evaluation of therapy targeting epithelial-cell adhesion-molecule aptamers for non-small cell lung cancer. J. Controlled Release 209, 88–100 (2015).  https://doi.org/10.1016/j.jconrel.2015.04.026CrossRefGoogle Scholar
  3. 3.
    Alivisatos, A.P., Johnsson, K.P., Peng, X., et al.: Organization of “nanocrystal molecules” using DNA. Nature 382, 609–611 (1996).  https://doi.org/10.1038/382609a0CrossRefGoogle Scholar
  4. 4.
    Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).  https://doi.org/10.1016/j.addr.2012.09.037CrossRefGoogle Scholar
  5. 5.
    Amjad, O.A., Mognetti, B.M., Cicuta, P., Di Michele, L.: Membrane adhesion through bridging by multimeric ligands. Langmuir 33, 1139–1146 (2017).  https://doi.org/10.1021/acs.langmuir.6b03692CrossRefGoogle Scholar
  6. 6.
    Andersen, E.S., Dong, M., Nielsen, M.M., et al.: Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73–76 (2009).  https://doi.org/10.1038/nature07971CrossRefGoogle Scholar
  7. 7.
    Angioletti-Uberti, S.: Exploiting receptor competition to enhance nanoparticle binding selectivity. Phys. Rev. Lett. 118, 1–5 (2017).  https://doi.org/10.1103/PhysRevLett.118.068001CrossRefGoogle Scholar
  8. 8.
    Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D.: Re-entrant melting as a design principle for DNA-coated colloids. Nat. Mater. 11, 518–522 (2012).  https://doi.org/10.1038/nmat3314CrossRefGoogle Scholar
  9. 9.
    Angioletti-Uberti, S., Varilly, P., Mognetti, B.M., et al.: Communication: a simple analytical formula for the free energy of ligand-receptor-mediated interactions. J. Chem. Phys. 138, 0211021–0211024 (2013).  https://doi.org/10.1063/1.4775806CrossRefGoogle Scholar
  10. 10.
    Arundhati, G., Heston, W.D.W.: Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J. Cell. Biochem. 91, 528–539 (2003).  https://doi.org/10.1002/jcb.10661CrossRefGoogle Scholar
  11. 11.
    Auyeung, E., Li, T.I.N.G., Senesi, A.J., et al.: DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).  https://doi.org/10.1038/nature12739CrossRefGoogle Scholar
  12. 12.
    Baaske, M.D., Foreman, M.R., Vollmer, F.: Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol. 9, 933–939 (2014).  https://doi.org/10.1038/nnano.2014.180CrossRefGoogle Scholar
  13. 13.
    Bachmann, S.J., Kotar, J., Parolini, L., et al.: Melting transition in lipid vesicles functionalised by mobile DNA linkers. Soft Matter 12, 7804–7817 (2016).  https://doi.org/10.1039/C6SM01515HCrossRefGoogle Scholar
  14. 14.
    Bachmann, S.J., Petitzon, M., Mognetti, B.M.: Bond formation kinetics affects self-assembly directed by ligand–receptor interactions. Soft Matter 12, 9585–9592 (2016).  https://doi.org/10.1039/C6SM02016JCrossRefGoogle Scholar
  15. 15.
    Baker, B.R., Lai, R.Y., Wood, M.S., et al.: An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128, 3138–3139 (2006).  https://doi.org/10.1021/ja056957pCrossRefGoogle Scholar
  16. 16.
    Banga, R.J., Chernyak, N., Narayan, S.P., et al.: Liposomal spherical nucleic acids. J. Am. Chem. Soc. 136(28), 9866–9869 (2014).  https://doi.org/10.1021/ja504845fCrossRefGoogle Scholar
  17. 17.
    Beales, P.A., Vanderlick, T.K.: Partitioning of membrane-anchored DNA between coexisting lipid phases. J. Phys. Chem. B 113, 13678–13686 (2009).  https://doi.org/10.1021/jp9006735CrossRefGoogle Scholar
  18. 18.
    Bell, G.I., Dembo, M., Bongrand, P.: Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys. J. 45, 1051–1064 (1984).  https://doi.org/10.1016/S0006-3495(84)84252-6CrossRefGoogle Scholar
  19. 19.
    Bell, N.A.W., Keyser, U.F.: Nanopores formed by DNA origami: a review. FEBS Lett. 588, 3564–3570 (2014).  https://doi.org/10.1016/j.febslet.2014.06.013CrossRefGoogle Scholar
  20. 20.
    Biffi, S., Cerbino, R., Bomboi, F., et al.: Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proc. Natl. Acad. Sci. 110, 15633–15637 (2013).  https://doi.org/10.1073/pnas.1304632110CrossRefGoogle Scholar
  21. 21.
    Biffi, S., Cerbino, R., Nava, G., et al.: Equilibrium gels of low-valence DNA nanostars: a colloidal model for strong glass formers. Soft Matter 11, 3132–3138 (2015).  https://doi.org/10.1039/C4SM02144DCrossRefGoogle Scholar
  22. 22.
    Björnmalm, M., Thurecht, K.J., Michael, M., et al.: Bridging bio-nano science and cancer nanomedicine. ACS Nano 11, 9594–9613 (2017).  https://doi.org/10.1021/acsnano.7b04855CrossRefGoogle Scholar
  23. 23.
    Boal, A.K., Ilhan, F., Derouchey, J.E., et al.: Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404, 746–748 (2000).  https://doi.org/10.1038/35008037CrossRefGoogle Scholar
  24. 24.
    Bock, L.C., Griffin, L.C., Latham, J.A., et al.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992).  https://doi.org/10.1038/355564a0CrossRefGoogle Scholar
  25. 25.
    Boltasseva, A., Shalaev, V.M.: Fabrication of optical negative-index metamaterials: recent advances and outlook. Metamaterials 2, 1–17 (2008).  https://doi.org/10.1016/j.metmat.2008.03.004CrossRefGoogle Scholar
  26. 26.
    Bomboi, F., Biffi, S., Cerbino, R., et al.: Equilibrium gels of trivalent DNA-nanostars: effect of the ionic strength on the dynamics. Eur. Phys. J. E 38, 64–69 (2015).  https://doi.org/10.1140/epje/i2015-15064-9CrossRefGoogle Scholar
  27. 27.
    Bomboi, F., Romano, F., Leo, M., et al.: Re-entrant DNA gels. Nat. Commun. 7, 1–6 (2016).  https://doi.org/10.1038/ncomms13191CrossRefGoogle Scholar
  28. 28.
    Brady, R.A., Brooks, N.J., Cicuta, P., Di Michele, L.: Crystallization of amphiphilic DNA C-Stars. Nano Lett. 17(5), 3276–3281 (2017).  https://doi.org/10.1021/acs.nanolett.7b00980CrossRefGoogle Scholar
  29. 29.
    Bunka, D.H.J., Stockley, P.G.: Aptamers come of age—at last. Nat. Rev. Microbiol. 4, 588–596 (2006).  https://doi.org/10.1038/nrmicro1458CrossRefGoogle Scholar
  30. 30.
    Burke, D.H., Gold, L.: RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 25, 2020–2024 (1997)CrossRefGoogle Scholar
  31. 31.
    Cangialosi, A., Yoon, C.K., Liu, J., et al.: DNA sequence–directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017).  https://doi.org/10.1126/science.aan3925CrossRefGoogle Scholar
  32. 32.
    Cao, Y.W., Jin, R., Mirkin, C.A.: DNA-modified core–shell Ag/Au nanoparticles. J. Am. Chem. Soc. 123, 7961–7962 (2001).  https://doi.org/10.1021/ja011342nCrossRefGoogle Scholar
  33. 33.
    Cao, X., Li, S., Chen, L., et al.: Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628 (2009).  https://doi.org/10.1093/nar/gkp489CrossRefGoogle Scholar
  34. 34.
    Castro, C.E., Kilchherr, F., Kim, D.N., et al.: A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011).  https://doi.org/10.1038/nmeth.1570CrossRefGoogle Scholar
  35. 35.
    Cerchia, L., de Franciscis, V.: Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 28, 517–525 (2018).  https://doi.org/10.1016/j.tibtech.2010.07.005CrossRefGoogle Scholar
  36. 36.
    Chang, Y.-C., Yang, C.-Y., Sun, R.-L., et al.: Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Sci. Rep. 3, 1863–1870 (2013).  https://doi.org/10.1038/srep01863CrossRefGoogle Scholar
  37. 37.
    Cheifetz, A., Mayer, L.: Monoclonal antibodies, immunogenicity, and associated infusion reactions. Mt. Sinai J. Med. 72, 250–256 (2005)Google Scholar
  38. 38.
    Chen, H.Y.: Adhesion-induced phase separation of multiple species of membrane junctions. Phys. Rev. E 67, 1–10 (2003).  https://doi.org/10.1103/PhysRevE.67.031919CrossRefGoogle Scholar
  39. 39.
    Chen, Y.J., Groves, B., Muscat, R.A., Seelig, G.: DNA nanotechnology from the test tube to the cell. Nat. Nanotechnol. 10, 748–760 (2015).  https://doi.org/10.1038/nnano.2015.195CrossRefGoogle Scholar
  40. 40.
    Chester, K., Pedley, B., Tolner, B., et al.: Engineering antibodies for clinical applications in cancer. Tumor Biol 25, 91–98 (2004).  https://doi.org/10.1159/000077727CrossRefGoogle Scholar
  41. 41.
    Collier, C.P., Vossmeyer, T., Heath, J.R.: Nanocrystal superlattices. Annu. Rev. Phys. Chem. 49, 371–404 (1998).  https://doi.org/10.1146/annurev.physchem.49.1.371CrossRefGoogle Scholar
  42. 42.
    Coombs, D., Dembo, M., Wofsy, C., Goldstein, B.: Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. Biophys. J. 86, 1408–1423 (2004).  https://doi.org/10.1016/S0006-3495(04)74211-3CrossRefGoogle Scholar
  43. 43.
    Cox, J.C., Hayhurst, A., Hesselberth, J., et al.: Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108–e108 PMC137152 (2002)Google Scholar
  44. 44.
    Curk, T., Dobnikar, J., Frenkel, D.: Optimal multivalent targeting of membranes with many distinct receptors. Proc. Natl. Acad. Sci. 114, 7210–7215 (2017).  https://doi.org/10.1073/pnas.1704226114CrossRefGoogle Scholar
  45. 45.
    Cutler, J.I., Auyeung, E., Mirkin, C.A.: Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).  https://doi.org/10.1021/ja209351uCrossRefGoogle Scholar
  46. 46.
    Daniel, M.-C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).  https://doi.org/10.1021/cr030698+CrossRefGoogle Scholar
  47. 47.
    Daniels, D.A., Chen, H., Hicke, B.J., et al.: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl. Acad. Sci. U. S. A. 100, 15416–15421 (2003).  https://doi.org/10.1073/pnas.2136683100CrossRefGoogle Scholar
  48. 48.
    Dave, N., Liu, J.: Programmable assembly of DNA-functionalized liposomes by DNA. ACS Nano 5, 1304–1312 (2011).  https://doi.org/10.1021/nn1030093CrossRefGoogle Scholar
  49. 49.
    de Gennes, P.G.: The Physics of Liquid Crystals. Clarendon Press (1974)Google Scholar
  50. 50.
    Decuzzi, P., Ferrari, M.: The receptor-mediated endocytosis of nonspherical particles. Biophys. J. 94, 3790–3797 (2008).  https://doi.org/10.1529/biophysj.107.120238CrossRefGoogle Scholar
  51. 51.
    Demetzos, C., Pippa, N.: Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 21, 250–257 (2014).  https://doi.org/10.3109/10717544.2013.844745CrossRefGoogle Scholar
  52. 52.
    Di Michele, L., Jana, P.K., Mognetti, B.M.: Ligand mobility suppresses membrane wrapping in passive endocytosis (2017). ArXiv ID 1708.03733Google Scholar
  53. 53.
    Ding, F., Guo, S., Xie, M., et al.: Diagnostic applications of gastric carcinoma cell aptamers in vitro and in vivo. Talanta 134, 30–36 (2015).  https://doi.org/10.1016/j.talanta.2014.09.036CrossRefGoogle Scholar
  54. 54.
    Dirks, R.M., Bois, J.S., Schaeffer, J.M., et al.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev 49, 65–88 (2007).  https://doi.org/10.1137/060651100MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Doyen, M., Bartik, K., Bruylants, G.: UV–Vis and NMR study of the formation of gold nanoparticles by citrate reduction: observation of gold–citrate aggregates. J. Colloid Interface Sci. 399, 1–5 (2013).  https://doi.org/10.1016/j.jcis.2013.02.040CrossRefGoogle Scholar
  56. 56.
    Dreyfus, R., Leunissen, M.E., Sha, R., et al.: Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81, 1–10 (2010).  https://doi.org/10.1103/PhysRevE.81.041404CrossRefGoogle Scholar
  57. 57.
    Dua, P., Kim, S., Lee, D.: Nucleic acid aptamers targeting cell-surface proteins. Methods 54, 215–225 (2011).  https://doi.org/10.1016/j.ymeth.2011.02.002CrossRefGoogle Scholar
  58. 58.
    Dubacheva, G.V., Curk, T., Auzély-Velty, R., et al.: Designing multivalent probes for tunable superselective targeting. Proc. Natl. Acad. Sci. 112, 5579–5584 (2015).  https://doi.org/10.1073/pnas.1500622112CrossRefGoogle Scholar
  59. 59.
    Dubacheva, G.V., Curk, T., Mognetti, B.M., et al.: Superselective targeting using multivalent polymers. J. Am. Chem. Soc. 136, 1722–1725 (2014).  https://doi.org/10.1021/ja411138sCrossRefGoogle Scholar
  60. 60.
    Dubertret, B., Calame, M., Libchaber, A.J.: Single-mismatch detection using gold-quenched fluorescent oligonucleotides (vol. 19, p. 365, 2001). Nat. Biotechnol. 19, 680–681 (2001).  https://doi.org/10.1038/86762CrossRefGoogle Scholar
  61. 61.
    Duncan, G.A., Bevan, M.A.: Computational design of nanoparticle drug delivery systems for selective targeting. Nanoscale 7, 15332–15340 (2015).  https://doi.org/10.1039/c5nr03691gCrossRefGoogle Scholar
  62. 62.
    Elghanian, R.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).  https://doi.org/10.1126/science.277.5329.1078CrossRefGoogle Scholar
  63. 63.
    Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).  https://doi.org/10.1038/346818a0CrossRefGoogle Scholar
  64. 64.
    Farokhzad, O.C., Cheng, J., Teply, B.A., et al.: Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. 103, 6315–6320 (2006).  https://doi.org/10.1073/pnas.0601755103CrossRefGoogle Scholar
  65. 65.
    Farokhzad, O.C., Karp, J.M., Langer, R.: Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 3, 311–324 (2006).Google Scholar
  66. 66.
    Fernandez-Castanon, J., Bomboi, F., Rovigatti, L., et al.: Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars. J. Chem. Phys. 145(84910), 1–7 (2016).  https://doi.org/10.1063/1.4961398CrossRefGoogle Scholar
  67. 67.
    Fraccia, T.P., Smith, G.P., Bethge, L., et al.: Liquid crystal ordering and isotropic gelation in solutions of four-base-long DNA oligomers. ACS Nano 10, 8508–8516 (2016).  https://doi.org/10.1021/acsnano.6b03622CrossRefGoogle Scholar
  68. 68.
    Fraccia, T.P., Smith, G.P., Zanchetta, G., et al.: Abiotic ligation of DNA oligomers templated by their liquid crystal ordering. Nat. Commun. 6, 1–7 (2015).  https://doi.org/10.1038/ncomms7424CrossRefGoogle Scholar
  69. 69.
    Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. U. S. A. 102, 9469–9474 (2005).  https://doi.org/10.1073/pnas.0503879102CrossRefGoogle Scholar
  70. 70.
    Gehrels, E.W., Rogers, W.B., Manoharan, V.N.: Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matter 14, 969–984 (2018).  https://doi.org/10.1039/C7SM01722GCrossRefGoogle Scholar
  71. 71.
    Gestwicki, J.E., Cairo, C.W., Strong, L.E., et al.: Influencing receptor-ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc. 124, 14922–14933 (2002).  https://doi.org/10.1021/ja027184xCrossRefGoogle Scholar
  72. 72.
    Gold, L., Janjic, N., Jarvis, T., et al.: Aptamers and the RNA world, past and present. Cold Spring Harb. Perspect. Biol. 4, 1–11 (2012).  https://doi.org/10.1101/cshperspect.a003582CrossRefGoogle Scholar
  73. 73.
    Gothelf, K.V.: LEGO-like DNA structures. Science 338, 1159–1160 (2012).  https://doi.org/10.1126/science.1229960CrossRefGoogle Scholar
  74. 74.
    Grzybowski, B.A., Huck, W.T.S.: The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).  https://doi.org/10.1038/nnano.2016.116CrossRefGoogle Scholar
  75. 75.
    Günter, M.: The chemical biology of aptamers. Angew. Chem. Int. Ed. 48, 2672–2689 (2009).  https://doi.org/10.1002/anie.200804643CrossRefGoogle Scholar
  76. 76.
    Hamaguchi, N., Ellington, A., Stanton, M.: Aptamer beacons for the direct detection of proteins. Anal. Biochem. 294, 126–131 (2001).  https://doi.org/10.1006/abio.2001.5169CrossRefGoogle Scholar
  77. 77.
    Han, D., Pal, S., Nangreave, J., et al.: DNA origami with complex curvatures in three-dimensional space. Science 332, 342–346 (2011).  https://doi.org/10.1126/science.1202998CrossRefGoogle Scholar
  78. 78.
    Herr, J.K., Smith, J.E., Medley, C.D., et al.: Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal. Chem. 78, 2918–2924 (2006).  https://doi.org/10.1021/ac052015rCrossRefGoogle Scholar
  79. 79.
    Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435 (1977).  https://doi.org/10.1103/RevModPhys.49.435CrossRefGoogle Scholar
  80. 80.
    Hongguang, S., Youli, Z.: Aptamers and their applications in nanomedicine. Small 11, 2352–2364 (2015).  https://doi.org/10.1002/smll.201403073CrossRefGoogle Scholar
  81. 81.
    Houk, N.K., Leach, G.A., Kim, P.S., Zhang, X.: Binding affinities of host-guest, protein-ligand, and protein–transition-state complexes. Angew. Chem. Int. Ed. 42, 4872–4897 (2003).  https://doi.org/10.1002/anie.200200565CrossRefGoogle Scholar
  82. 82.
    Hu, J., Lipowsky, R., Weikl, T.R.: Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes. Proc. Natl. Acad. Sci. 110, 15283–15288 (2013).  https://doi.org/10.1073/pnas.1305766110CrossRefGoogle Scholar
  83. 83.
    Hu, Q., Li, H., Wang, L., et al.: DNA nanotechnology-enabled drug delivery systems. Chem. Rev. (2018).  https://doi.org/10.1021/acs.chemrev.7b00663
  84. 84.
    Huizenga, D.E., Szostak, J.W.: A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656–665 (1995).  https://doi.org/10.1021/bi00002a033CrossRefGoogle Scholar
  85. 85.
    Jabbari, H., Aminpour, M., Montemagno, C.: Computational approaches to nucleic acid origami. ACS Comb Sci 17, 535–547 (2015).  https://doi.org/10.1021/acscombsci.5b00079CrossRefGoogle Scholar
  86. 86.
    Jacobs, W.M., Reinhardt, A., Frenkel, D.: Communication: Theoretical prediction of free-energy landscapes for complex self-assembly. J. Chem. Phys. 142, 1–5 (2015).  https://doi.org/10.1063/1.4905670CrossRefGoogle Scholar
  87. 87.
    Jacobson, K., Ishihara, A., Inman, R.: Lateral diffusion of proteins in membranes. Annu. Rev. Physiol. 49, 163–175 (1987).  https://doi.org/10.1146/annurev.ph.49.030187.001115CrossRefGoogle Scholar
  88. 88.
    Jiang, Q., Song, C., Nangreave, J., et al.: DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 134, 13396–13403 (2012).  https://doi.org/10.1021/ja304263nCrossRefGoogle Scholar
  89. 89.
    Jones, M.R., Seeman, N.C., Mirkin, C.A.: Programmable materials and the nature of the DNA bond. Science 347, 1–11 (2015).  https://doi.org/10.1126/science.1260901CrossRefGoogle Scholar
  90. 90.
    Joshi, D., Bargteil, D., Caciagli, A., et al.: Kinetic control of the coverage of oil droplets by DNA-functionalized colloids. Sci. Adv. 2, 1–9 (2016).  https://doi.org/10.1126/sciadv.1600881CrossRefGoogle Scholar
  91. 91.
    Joshi, R., Janagama, H., Dwivedi, H.P., et al.: Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23, 20–28 (2009).  https://doi.org/10.1016/j.mcp.2008.10.006CrossRefGoogle Scholar
  92. 92.
    Ke, P.C., Lin, S., Parak, W.J., et al.: A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).  https://doi.org/10.1021/acsnano.7b08008CrossRefGoogle Scholar
  93. 93.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).  https://doi.org/10.1126/science.1227268CrossRefGoogle Scholar
  94. 94.
    Ke, Y., Ong, L.L., Sun, W., et al.: DNA brick crystals with prescribed depths. Nat. Chem. 6, 994–1002 (2014).  https://doi.org/10.1038/nchem.2083CrossRefGoogle Scholar
  95. 95.
    Keefe, A.D., Pai, S., Ellington, A.: Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).  https://doi.org/10.1038/nrd3141CrossRefGoogle Scholar
  96. 96.
    Kim, A.J., Biancaniello, P.L., Crocker, J.C.: Engineering DNA-mediated colloidal crystallization. Langmuir 22, 1991–2001 (2006).  https://doi.org/10.1021/la0528955CrossRefGoogle Scholar
  97. 97.
    Kim, Y.S., Chung, J., Song, M.Y., et al.: Aptamer cocktails: Enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens. Bioelectron. 54, 195–198 (2014).  https://doi.org/10.1016/j.bios.2013.11.003CrossRefGoogle Scholar
  98. 98.
    Kim, Y.S., Song, M.Y., Jurng, J., Kim, B.C.: Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal. Biochem. 436, 22–28 (2013).  https://doi.org/10.1016/j.ab.2013.01.014CrossRefGoogle Scholar
  99. 99.
    Kimoto, M., Yamashige, R., Matsunaga, K.I., et al.: Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013).  https://doi.org/10.1038/nbt.2556CrossRefGoogle Scholar
  100. 100.
    Kitov, P.I., Bundle, D.R.: On the nature of the multivalency effect: a thermodynamic model. J. Am. Chem. Soc. 125, 16271–16284 (2003).  https://doi.org/10.1021/ja038223nCrossRefGoogle Scholar
  101. 101.
    Kitov, P.I., Sadowska, J.M., Mulvey, G., et al.: Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000).  https://doi.org/10.1038/35001095CrossRefGoogle Scholar
  102. 102.
    Kryza, D., Debordeaux, F., Azéma, L., et al.: Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS One 1, 16.  https://doi.org/10.1371/journal.pone.0149387 (February 22)CrossRefGoogle Scholar
  103. 103.
    LaVan, D.A., McGuire, T., Langer, R.: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003).  https://doi.org/10.1038/nbt876CrossRefGoogle Scholar
  104. 104.
    Lanfranco, R., Giavazzi, F., Salina, M., et al.: Selective adsorption on fluorinated plastic enables the optical detection of molecular pollutants in water. Phys. Rev. Appl. 5, 1–15 (2016).  https://doi.org/10.1103/PhysRevApplied.5.054012CrossRefGoogle Scholar
  105. 105.
    Lanfranco, R., Saez, J., Di Nicolò, E., et al.: Phantom membrane microfluidic cross-flow filtration device for the direct optical detection of water pollutants. Sens. Actuators B Chem. 257, 924–930 (2018).  https://doi.org/10.1016/j.snb.2017.11.024CrossRefGoogle Scholar
  106. 106.
    Lee, J.F.: Aptamer database. Nucleic Acids Res. 32, 95D–100 (2004).  https://doi.org/10.1093/nar/gkh094CrossRefGoogle Scholar
  107. 107.
    Lee, J.B., Peng, S., Yang, D., et al.: A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 7, 816–820 (2012).  https://doi.org/10.1038/nnano.2012.211CrossRefGoogle Scholar
  108. 108.
    Lee, J.F., Stovall, G.M., Ellington, A.D.: Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282–289 (2006).  https://doi.org/10.1016/j.cbpa.2006.03.015CrossRefGoogle Scholar
  109. 109.
    Li, D., Qu, L., Zhai, W., et al.: Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy. Environ. Sci. Technol. 45, 4046–4052 (2011).  https://doi.org/10.1021/es104155rCrossRefGoogle Scholar
  110. 110.
    Licata, N.A., Tkachenko, A.V.: Kinetic limitations of cooperativity-based drug delivery systems. Phys. Rev. Lett. 100, 1–4 (2008).  https://doi.org/10.1103/physrevlett.100.158102CrossRefGoogle Scholar
  111. 111.
    Liu, H., He, Y., Ribbe, A.E., Mao, C.: Two-dimensional (2D) DNA crystals assembled from two DNA strands. Biomacromolecules 6, 2943–2945 (2005).  https://doi.org/10.1021/bm050632jCrossRefGoogle Scholar
  112. 112.
    Liu, F., Sha, R., Seeman, N.C.: Modifying the surface features of two-dimensional DNA crystals. J. Am. Chem. Soc. 121, 917–922 (1999).  https://doi.org/10.1021/ja982824aCrossRefGoogle Scholar
  113. 113.
    Liu, D., Wang, Z., Jiang, X.: Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3, 1421–1433 (2011).  https://doi.org/10.1039/c0nr00887gCrossRefGoogle Scholar
  114. 114.
    Liu, Y., Zhang, X.: Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494–2507 (2011).  https://doi.org/10.1039/C0CS00184HCrossRefGoogle Scholar
  115. 115.
    Lo, P.K., Metera, K.L., Sleiman, H.F.: Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Curr. Opin. Chem. Biol. 14, 597–607 (2010).  https://doi.org/10.1016/j.cbpa.2010.08.002CrossRefGoogle Scholar
  116. 116.
    Lowe, J.N., Fulton, D.A., Chiu, S.H., et al.: Polyvalent interactions in unnatural recognition processes. J. Org. Chem. 69, 4390–4402 (2004).  https://doi.org/10.1021/jo030283oCrossRefGoogle Scholar
  117. 117.
    Loweth, C.J., Caldwell, W.B., Peng, X., et al.: DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38, 1808–1812 (1999).  https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12%3c1808:AID-ANIE1808%3e3.0.CO;2-CCrossRefGoogle Scholar
  118. 118.
    Macfarlane, R.J., Lee, B., Jones, M.R., et al.: Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).  https://doi.org/10.1126/science.1210493CrossRefGoogle Scholar
  119. 119.
    Mammen, M., Choi, S.K., Whitesides, G.M.: Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).  https://doi.org/10.1002/(sici)1521-3773(19981102)37:20%3c2754:aid-anie2754%3e3.0.co;2-3CrossRefGoogle Scholar
  120. 120.
    Mammen, M., Dahmann, G., Whitesides, G.M.: Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J. Med. Chem. 38, 4179–4190 (1995).  https://doi.org/10.1021/jm00021a007CrossRefGoogle Scholar
  121. 121.
    Marangoni, K., Neves, A.F., Rocha, R.M., et al.: Prostate-specific RNA aptamer: promising nucleic acid antibody-like cancer detection. Nat. Publ. Gr. 5, 1–13 (2015).  https://doi.org/10.1038/srep12090CrossRefGoogle Scholar
  122. 122.
    Marchi, A.N., Saaem, I., Vogen, B.N., et al.: Toward larger DNA origami. Nano Lett. 14, 5740–5747 (2014).  https://doi.org/10.1021/nl502626sCrossRefGoogle Scholar
  123. 123.
    Martinez-Veracoechea, F.J., Frenkel, D.: Designing super selectivity in multivalent nano-particle binding. Proc. Natl. Acad. Sci. 108, 10963–10968 (2011).  https://doi.org/10.1073/pnas.1105351108CrossRefGoogle Scholar
  124. 124.
    Maye, M.M., Nykypanchuk, D., van der Lelie, D., Gang, O.: DNA-regulated micro- and nanoparticle assembly. Small 3, 1678–1682 (2007).  https://doi.org/10.1002/smll.200700357CrossRefGoogle Scholar
  125. 125.
    Mi, J., Ray, P., Liu, J., et al.: In vivo selection against human colorectal cancer xenografts identifies an aptamer that targets RNA helicase protein DHX9. Mol. Ther. Nucleic Acids 5, e315 (2016).  https://doi.org/10.1038/mtna.2016.27CrossRefGoogle Scholar
  126. 126.
    Di Michele, L., Bachmann, S.J., Parolini, L., Mognetti, B.M.: Communication: free energy of ligand-receptor systems forming multimeric complexes. J. Chem. Phys. 144, 1–5 (2016).  https://doi.org/10.1063/1.4947550CrossRefGoogle Scholar
  127. 127.
    Di Michele, L., Eiser, E.: Developments in understanding and controlling self assembly of DNA-functionalized colloids. Phys. Chem. Chem. Phys. 15, 3115–3129 (2013).  https://doi.org/10.1039/C3CP43841DCrossRefGoogle Scholar
  128. 128.
    Milam, V.T., Hiddessen, A.L., Crocker, J.C., et al.: DNA-driven assembly of bidisperse, micron-sized colloids. Langmuir 19, 10317–10323 (2003).  https://doi.org/10.1021/la034376cCrossRefGoogle Scholar
  129. 129.
    Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J.: A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).  https://doi.org/10.1038/382607a0CrossRefGoogle Scholar
  130. 130.
    Mognetti, B.M., Leunissen, M.E., Frenkel, D.: Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter 8, 2213–2221 (2012).  https://doi.org/10.1039/C2SM06635ACrossRefGoogle Scholar
  131. 131.
    Mognetti, B.M., Varilly, P., Angioletti-Uberti, S., et al.: Predicting DNA-mediated colloidal pair interactions. Proc. Natl. Acad. Sci. 109(7), E378:E379 LP-E379 (2012b)Google Scholar
  132. 132.
    Nakata, M., Zanchetta, G., Chapman, B.D., et al.: End-to-end stacking and liquid crystal formation of 6- to 20-base pair DNA duplexes. Science 318, 1–4 (2009).  https://doi.org/10.1126/science.1143826CrossRefGoogle Scholar
  133. 133.
    Narasimhan, B., Goodman, J.T., Vela Ramirez, J.E.: Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu. Rev. Biomed. Eng. 18, 25–49 (2016).  https://doi.org/10.1146/annurev-bioeng-082615-030519CrossRefGoogle Scholar
  134. 134.
    Niemeyer, C.M.: DNA as a material for nanotechnology. Angew Chemie Int Ed English 36, 585–587 (2003).  https://doi.org/10.1002/anie.199705851CrossRefGoogle Scholar
  135. 135.
    Nykypanchuk, D., Maye, M.M., van der Lelie, D., Gang, O.: DNA-guided crystallisation of colloidal nanoparticles. Nature 451, 549–552 (2008).  https://doi.org/10.1038/nature06560CrossRefGoogle Scholar
  136. 136.
    Ong, L.L., Hanikel, N., Yaghi, O.K., et al.: Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature 552, 72–77 (2017).  https://doi.org/10.1038/nature24648CrossRefGoogle Scholar
  137. 137.
    Orgel, L.E.: The origin of life on the earth. Sci. Am. 271, 76–83 (1994)CrossRefGoogle Scholar
  138. 138.
    Orgel, L.E.: The origin of life—a review of facts and speculations. Trends Biochem. Sci. 23, 491–495 (2018).  https://doi.org/10.1016/S0968-0004(98)01300-0CrossRefGoogle Scholar
  139. 139.
    Ouldridge, T.E., Hoare, R.L., Louis, A.A., et al.: Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker. ACS Nano 7, 2479–2490 (2013).  https://doi.org/10.1021/nn3058483CrossRefGoogle Scholar
  140. 140.
    Oyarzún, B., Mognetti, B.M.: Efficient sampling of reversible cross-linking polymers: self-assembly of single-chain polymeric nanoparticles. J. Chem. Phys. 148, 114110 (2018).  https://doi.org/10.1063/1.5020158CrossRefGoogle Scholar
  141. 141.
    Park, S.Y., Lytton-Jean, A.K.R., Lee, B., et al.: DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).  https://doi.org/10.1038/nature06508CrossRefGoogle Scholar
  142. 142.
    Park, N., Um, S.H., Funabashi, H., et al.: A cell-free protein-producing gel. Nat. Mater. 8, 432–437 (2009).  https://doi.org/10.1038/nmat2419CrossRefGoogle Scholar
  143. 143.
    Parolini, L., Kotar, J., Di Michele, L., Mognetti, B.M.: Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano 10, 2392–2398 (2016).  https://doi.org/10.1021/acsnano.5b07201CrossRefGoogle Scholar
  144. 144.
    Paukstelis, P.J.: Three-dimensional DNA crystals as molecular sieves. J. Am. Chem. Soc. 128, 6794–6795 (2006).  https://doi.org/10.1021/ja061322rCrossRefGoogle Scholar
  145. 145.
    Pontani, L.-L., Jorjadze, I., Viasnoff, V., Brujic, J.: Biomimetic emulsions reveal the effect of mechanical forces on cell–cell adhesion. Proc. Natl. Acad. Sci. 109, 9839 LP-9844 (2012)  https://doi.org/10.1073/pnas.1201499109CrossRefGoogle Scholar
  146. 146.
    Praetorius, F., Kick, B., Behler, K.L., et al.: Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).  https://doi.org/10.1038/nature24650CrossRefGoogle Scholar
  147. 147.
    Prins, L.J., Haag, R.: Multivalency. Wiley Blackwell (2018)Google Scholar
  148. 148.
    Proske, D., Blank, M., Buhmann, R., Resch, A.: Aptamers—basic research, drug development, and clinical applications. Appl. Microbiol. Biotechnol. 69, 367–374 (2005).  https://doi.org/10.1007/s00253-005-0193-5CrossRefGoogle Scholar
  149. 149.
    Qi, S.Y., Groves, J.T., Chakraborty, A.K.: Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. U. S. A. 98, 6548–6553 (2001).  https://doi.org/10.1073/pnas.111536798CrossRefGoogle Scholar
  150. 150.
    Rajasekaran, S.A., Anilkumar, G., Oshima, E., et al.: A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell 14, 4835–4845 (2003).  https://doi.org/10.1091/mbc.E02-11-0731CrossRefGoogle Scholar
  151. 151.
    Ramakrishnan, N., Tourdot, R.W., Eckmann, D.M., et al.: Biophysically inspired model for functionalized nanocarrier adhesion to cell surface: roles of protein expression and mechanical factors. R. Soc. Open Sci. 3, 1–21 (2016).  https://doi.org/10.1098/rsos.160260MathSciNetCrossRefGoogle Scholar
  152. 152.
    Rao, J., Lahiri, J., Isaacs, L., et al.: A trivalent system from vancomycin-D-Ala-D-Ala with higher affinity than avidin-biotin. Science 280, 708–711 (1998).  https://doi.org/10.1126/science.280.5364.708CrossRefGoogle Scholar
  153. 153.
    Raychaudhuri, S., Chakraborty, A.K., Kardar, M.: Effective membrane model of the immunological synapse. Phys. Rev. Lett. 91, 1–4 (2003).  https://doi.org/10.1103/PhysRevLett.91.208101CrossRefGoogle Scholar
  154. 154.
    Rogers, W.B., Crocker, J.C.: Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl. Acad. Sci. 108, 15687–15692 (2011).  https://doi.org/10.1073/pnas.1109853108CrossRefGoogle Scholar
  155. 155.
    Rogers, W.B., Manoharan, V.N.: Programming colloidal phase transitions with DNA strand displacement. Science 347, 639–642 (2015).  https://doi.org/10.1126/science.1259762CrossRefGoogle Scholar
  156. 156.
    Romano, F., Sciortino, F.: Switching bonds in a DNA gel: an all-DNA vitrimer. Phys. Rev. Lett. 114(78104), 1–5 (2015).  https://doi.org/10.1103/PhysRevLett.114.078104CrossRefGoogle Scholar
  157. 157.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).  https://doi.org/10.1038/nature04586CrossRefGoogle Scholar
  158. 158.
    Rovigatti, L., Bomboi, F., Sciortino, F.: Accurate phase diagram of tetravalent DNA nanostars. J. Chem. Phys. 140(154903), 1–10 (2014).  https://doi.org/10.1063/1.4870467CrossRefGoogle Scholar
  159. 159.
    Rovigatti, L., Smallenburg, F., Romano, F., Sciortino, F.: Gels of DNA nanostars never crystallize. ACS Nano 8, 3567–3574 (2014).  https://doi.org/10.1021/nn501138wCrossRefGoogle Scholar
  160. 160.
    Rozenblum, G.T., Lopez, V.G., Vitullo, A.D., Radrizzani, M.: Aptamers: current challenges and future prospects. Expert Opin. Drug Discov. 11, 127–135 (2016).  https://doi.org/10.1517/17460441.2016.1126244CrossRefGoogle Scholar
  161. 161.
    Saccà, B., Niemeyer, C.M.: DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012).  https://doi.org/10.1002/anie.201105846CrossRefGoogle Scholar
  162. 162.
    SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95, 1460–1465 (1998).  https://doi.org/10.1073/pnas.95.4.1460CrossRefGoogle Scholar
  163. 163.
    SantaLucia, J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).  https://doi.org/10.1146/annurev.biophys.32.110601.141800CrossRefGoogle Scholar
  164. 164.
    Sarvestani, A.S.: The effect of substrate rigidity on the assembly of specific bonds at biological interfaces. Soft Matter 9, 5927–5932 (2013).  https://doi.org/10.1039/C3SM00036BCrossRefGoogle Scholar
  165. 165.
    Savory, N., Nzakizwanayo, J., Abe, K., et al.: Selection of DNA aptamers against uropathogenic Escherichia coli NSM59 by quantitative PCR controlled Cell-SELEX. J. Microbiol. Methods 104, 94–100 (2014).  https://doi.org/10.1016/j.mimet.2014.06.016CrossRefGoogle Scholar
  166. 166.
    Schubertová, V., Martinez-Veracoechea, F.J., Vácha, R.: Design of multivalent inhibitors for preventing cellular uptake. Sci. Rep. 7, 1–7 (2017).  https://doi.org/10.1038/s41598-017-11735-7CrossRefGoogle Scholar
  167. 167.
    Seeman, N.C.: DNA Nanotechnology. WTEC Workshop Report R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States, vol. 3, pp. 177–180 (1998).  https://doi.org/10.1007/978-1-61779-142-0Google Scholar
  168. 168.
    Seifert, U., Lipowsky, R.: Adhesion of vesicles. Phys. Rev. A 42, 4768–4771 (1990).  https://doi.org/10.1103/PhysRevA.42.4768CrossRefGoogle Scholar
  169. 169.
    Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).  https://doi.org/10.1126/science.1058847CrossRefGoogle Scholar
  170. 170.
    Shi, J., Kantoff, P.W., Wooster, R., Farokhzad, O.C.: Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017).  https://doi.org/10.1038/nrc.2016.108CrossRefGoogle Scholar
  171. 171.
    Shimobayashi, S.F., Mognetti, B.M., Parolini, L., et al.: Direct measurement of DNA-mediated adhesion between lipid bilayers. Phys. Chem. Chem. Phys. 17, 15615–15628 (2015).  https://doi.org/10.1039/C5CP01340BCrossRefGoogle Scholar
  172. 172.
    Sievers, E.L., Senter, P.D.: Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).  https://doi.org/10.1146/annurev-med-050311-201823CrossRefGoogle Scholar
  173. 173.
    Sihvola, A.: Metamaterials in electromagnetics. Metamaterials 1, 2–11 (2007).  https://doi.org/10.1016/j.metmat.2007.02.003CrossRefGoogle Scholar
  174. 174.
    Snodin, B.E.K., Romano, F., Rovigatti, L., et al.: Direct simulation of the self-assembly of a small DNA origami. ACS Nano 10, 1724–1737 (2016).  https://doi.org/10.1021/acsnano.5b05865CrossRefGoogle Scholar
  175. 175.
    So-Jung, P., Anne, A.L., Chad, A.M., et al.: The electrical properties of gold nanoparticle assemblies linked by DNA. Angew. Chem. Int. Ed. 39, 3845–3848 (2000).  https://doi.org/10.1002/1521-3773(20001103)39:21%3c3845:aid-anie3845%3e3.0.co;2-oCrossRefGoogle Scholar
  176. 176.
    Song, D., Yang, R., Wang, C., et al.: Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Sci. Rep. 6, 1–9 (2016).  https://doi.org/10.1038/srep22870CrossRefGoogle Scholar
  177. 177.
    St John, A., Price, C.P.: Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 35, 155–167 (2014). PMC4204237Google Scholar
  178. 178.
    Storhoff, J.J., Elghanian, R., Mucic, R.C., et al.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959–1964 (1998).  https://doi.org/10.1021/ja972332iCrossRefGoogle Scholar
  179. 179.
    Storhoff, J.J., Mirkin, C.A.: Programmed materials synthesis with DNA. Chem. Rev. 99, 1849–1862 (1999).  https://doi.org/10.1021/cr970071pCrossRefGoogle Scholar
  180. 180.
    Sullenger, B.A.: Aptamers coming of age at twenty-five. Nucleic Acid Ther. 26, 119 (2016).  https://doi.org/10.1089/nat.2016.29001.sulCrossRefGoogle Scholar
  181. 181.
    Sun, H., Zhu, X., Lu, P.Y., et al.: Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol. Ther. Nucleic Acids 3, 1–14 (2014).  https://doi.org/10.1038/mtna.2014.32CrossRefGoogle Scholar
  182. 182.
    Tikhomirov, G., Petersen, P., Qian, L.: Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).  https://doi.org/10.1038/nature24655CrossRefGoogle Scholar
  183. 183.
    Tkachenko, A.V., Maslov, S.: Spontaneous emergence of autocatalytic information-coding polymers. J. Chem. Phys. 143(45102), 1–8 (2015).  https://doi.org/10.1063/1.4922545CrossRefGoogle Scholar
  184. 184.
    Tombelli, S., Minunni, M., Mascini, M.: Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 24, 191–200 (2007).  https://doi.org/10.1016/j.bioeng.2007.03.003CrossRefGoogle Scholar
  185. 185.
    Troian-Gautier, L., Valkenier, H., Mattiuzzi, A., et al.: Extremely robust and post-functionalizable gold nanoparticles coated with calix[4]arenes via metal-carbon bonds. Chem. Commun. 52, 10493–10496 (2016).  https://doi.org/10.1039/C6CC04534KCrossRefGoogle Scholar
  186. 186.
    Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).  https://doi.org/10.1126/science.2200121CrossRefGoogle Scholar
  187. 187.
    Um, S.H., Lee, J.B., Park, N., et al.: Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 5, 797–801 (2006).  https://doi.org/10.1038/nmat1741CrossRefGoogle Scholar
  188. 188.
    Valignat, M.-P., Theodoly, O., Crocker, J.C., et al.: Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc. Natl. Acad. Sci. 102, 4225–4229 (2005).  https://doi.org/10.1073/pnas.0500507102CrossRefGoogle Scholar
  189. 189.
    Varilly, P., Angioletti-Uberti, S., Mognetti, B.M., Frenkel, D.: A general theory of DNA-mediated and other valence-limited colloidal interactions. J. Chem. Phys. 137, 1–15 (2012).  https://doi.org/10.1063/1.4748100CrossRefGoogle Scholar
  190. 190.
    Ventola, C.L.: Mobile devices and apps for health care professionals: uses and benefits. Pharm. Ther. 39, 356–64 (2014). PMC4029126Google Scholar
  191. 191.
    Wang, Y., Breed, D.R., Manoharan, V.N., et al.: Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).  https://doi.org/10.1038/nature11564CrossRefGoogle Scholar
  192. 192.
    Wang, S., Dormidontova, E.E.: Selectivity of ligand-receptor interactions between nanoparticle and cell surfaces. Phys. Rev. Lett. 109, 1–5 (2012).  https://doi.org/10.1103/PhysRevLett.109.238102CrossRefGoogle Scholar
  193. 193.
    Wang, Y., Jenkins, I.C., McGinley, J.T., et al.: Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 1–8 (2017).  https://doi.org/10.1038/ncomms14173CrossRefGoogle Scholar
  194. 194.
    Wang, Y., Wang, Y., Zheng, X., et al.: Crystallization of DNA-coated colloids. Nat Commun 6, 1–8 (2015).  https://doi.org/10.1038/ncomms8253MathSciNetCrossRefGoogle Scholar
  195. 195.
    Wang, Y., Wang, Y., Zheng, X., et al.: Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015).  https://doi.org/10.1021/jacs.5b06607CrossRefGoogle Scholar
  196. 196.
    Watson, J.D., Crick, F.H.: The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18, 123–131 (1953).  https://doi.org/10.1101/SQB.1953.018.01.020CrossRefGoogle Scholar
  197. 197.
    Wicki, A., Witzigmann, D., Balasubramanian, V., Huwyler, J.: Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Controlled Release 200, 138–157 (2015).  https://doi.org/10.1016/j.jconrel.2014.12.030CrossRefGoogle Scholar
  198. 198.
    Wilhelm, S., Tavares, A.J., Dai, Q., et al.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 1–12 (2016).  https://doi.org/10.1038/natrevmats.2016.14CrossRefGoogle Scholar
  199. 199.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).  https://doi.org/10.1038/28998CrossRefGoogle Scholar
  200. 200.
    Wu, D., Wang, L., Li, W., et al.: DNA nanostructure-based drug delivery nanosystems in cancer therapy. Int. J. Pharm. 533, 169–178 (2017).  https://doi.org/10.1016/j.ijpharm.2017.09.032CrossRefGoogle Scholar
  201. 201.
    Xiong, H., Van Der Lelie, D., Gang, O.: Phase behavior of nanoparticles assembled by DNA linkers. Phys. Rev. Lett. 102(15504), 1–4 (2009).  https://doi.org/10.1103/PhysRevLett.102.015504CrossRefGoogle Scholar
  202. 202.
    Xu, G.K., Hu, J., Lipowsky, R., Weikl, T.R.: Binding constants of membrane-anchored receptors and ligands: a general theory corroborated by Monte Carlo simulations. J. Chem. Phys. 143(243136), 1–16 (2015).  https://doi.org/10.1063/1.4936134CrossRefGoogle Scholar
  203. 203.
    Yih, T.C., Al-Fandi, M.: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97, 1184–1190 (2006).  https://doi.org/10.1002/jcb.20796CrossRefGoogle Scholar
  204. 204.
    Yoo, J., Aksimentiev, A.: In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc. Natl. Acad. Sci. 110, 20099–20104 (2013).  https://doi.org/10.1073/pnas.1316521110CrossRefGoogle Scholar
  205. 205.
    Zadeh, J.N., Steenberg, C.D., Bois, J.S., Wolfe, B.R., Pierce, M.B., Khan, A.R., Dirks, R.M.P.N.: NUPACK: analysis and design of nucleic acid systems. J. Comput. Chem. 32, 170–173 (2010).  https://doi.org/10.1002/jcc.21596CrossRefGoogle Scholar
  206. 206.
    Zahid, M., Kim, B., Hussain, R., et al.: DNA nanotechnology: a future perspective. Nanoscale Res. Lett. 8, 1–13 (2013).  https://doi.org/10.1186/1556-276X-8-119CrossRefGoogle Scholar
  207. 207.
    Zanchetta, G., Lanfranco, R., Giavazzi, F., et al.: Emerging applications of label-free optical biosensors. Nanophotonics 6, 627–645 (2017).  https://doi.org/10.1515/nanoph-2016-0158CrossRefGoogle Scholar
  208. 208.
    Zenk, J., Tuntivate, C., Schulman, R.: Kinetics and thermodynamics of Watson-Crick base pairing driven DNA origami dimerization. J. Am. Chem. Soc. 138, 3346–3354 (2016).  https://doi.org/10.1021/jacs.5b10502CrossRefGoogle Scholar
  209. 209.
    Zhang, S., Li, J., Lykotrafitis, G., et al.: Size-dependent endocytosis of nanoparticles. Adv. Mater. 21, 419–424 (2009).  https://doi.org/10.1002/adma.200801393CrossRefGoogle Scholar
  210. 210.
    Zhang, Y., Lu, F., Yager, K.G., et al.: A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 8, 865–872 (2013).  https://doi.org/10.1038/nnano.2013.209CrossRefGoogle Scholar
  211. 211.
    Zhang, Y., McMullen, A., Pontani, L.L., et al.: Sequential self-assembly of DNA functionalized droplets. Nat. Commun. 8, 1–7 (2017).  https://doi.org/10.1038/s41467-017-00070-0CrossRefGoogle Scholar
  212. 212.
    Zhang, F., Nangreave, J., Liu, Y., Yan, H.: Structural DNA nanotechnology: state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).  https://doi.org/10.1021/ja505101aCrossRefGoogle Scholar
  213. 213.
    Zhao, Y.-X., Shaw, A., Zeng, X., et al.: DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6, 8684–8691 (2012).  https://doi.org/10.1021/nn3022662CrossRefGoogle Scholar
  214. 214.
    Zhdanov V.P.: Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane. Phys. Rev. E 96, 012408 (2017)Google Scholar
  215. 215.
    Zhou, J., Rossi, J.: Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).  https://doi.org/10.1038/nrd.2016.199CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Roberta Lanfranco
    • 1
    • 2
  • Bortolo M. Mognetti
    • 3
  • Gilles Bruylants
    • 2
    Email author
  1. 1.Biological and Soft Systems, Department of PhysicsUniversity of CambridgeCambridgeUK
  2. 2.Engineering of Molecular NanoSystems, Chemistry and Material Science DepartmentUniversité libre de BruxellesBrusselsBelgium
  3. 3.Physics of Complex Systems and Statistical Mechanics, Department of PhysicsUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations