Distribution of Mangroves and Soil Parameters in the Lothian Island of Sundarbans, India—A GIS Approach

  • Hema Gupta (Joshi)
  • Monoranjan Ghose
Conference paper


Tropical mangrove ecosystems are highly productive and provide extensive ecosystem services. This paper analyzes distribution of 21 mangrove species (thirteen true mangroves and eight mangrove associates) in relation to various tidal and edaphic factors. Species density, soil parameters and tidal inundation were explored in 40 sites of the Lothian Island of the Western Sundarbans. Only five species and two soil parameters varied significantly under different tidal inundations. Single-linkage hierarchical classification of species densities generated seven distinct species clusters. Stepwise regression of species densities with soil parameters explained a variation of 42% or higher. Calcium, phosphorus, nitrogen, pH, salinity and sand explained the maximum variation in species densities. Statistical method ‘kriging’ in the Arc GIS generated maps predicting distribution of species densities and selected soil parameters over the island. Maps illustrated highly saline northern mudflat region with a distinct seaward fringe of Avicennia alba and herb Acanthus ilicifolius. Soil nutrients like nitrogen, phosphorus and cations like sodium, calcium and magnesium were concentrated in the northern half of the island. Most of the species were concentrated in the middle- and southern-ridged portion of the island having lower soil salinity.


Anova Kriging Mangrove Stepwise regression 



We thank Professors A. Choudhuri, D. Roy and S. Bandopadhyay of Indian Statistical Institute, Kolkata for statistical assistance. We are also thankful to the Conservator and Joint Director, Sundarbans Biosphere Reserve, and DFO, South 24 Parganas, West Bengal for the necessary permission and help they provided for the fieldwork. Last, but not the least, we thank the field assistants for their sincere help.


  1. Alongi, D. M., Christofferson, P., & Tirendi, F. (1993). The influence of forest type on microbial-nutrient relationships in tropical mangrove sediments. Journal of Experimental Marine Biology and Ecology, 171, 201–223.CrossRefGoogle Scholar
  2. Ball, M. C. (1996). Comparative ecophysiology of mangrove forest and tropical lowland moist forest. In S. S. Mulkey, R. L. Chazdon, & A. O. Smith (Eds.), Tropical forest plant ecophysiology (pp. 461–469). New York: Chapman and Hall.CrossRefGoogle Scholar
  3. Ball, M. C. (1998). Mangrove species richness in relation to salinity and waterlogging: A case study along the Adelaide River floodplain, northern Australia. Global Ecology & Biogeography Letters, 7, 73–82.CrossRefGoogle Scholar
  4. Banerjee, L. K. (1987). Ecological studies on the mangals in the Mahanadi estuarine-delta Orissa: India. Tropical Ecology, 28, 117–125.Google Scholar
  5. Banerjee, L. K, Sastry, A. R. K., Nayar, M. P. (1989). Mangroves in India, identification manual. Botanical survey of India, Kolkata.Google Scholar
  6. Baruah, T. C., & Barthakur, H. P. (1997). A textbook of soil analysis. New Delhi: Vikas Publishing House Pvt. Ltd.Google Scholar
  7. Black, C. A. (1993). Soil fertility evaluation and control. Boca Raton, FL.: Lewish Publishers.Google Scholar
  8. Blasco, F. (1977). Outlines of ecology, botany and forestry of the mangals of Indian Subcontinent. In V. J. Chapman (Ed.), Wet coastal ecosystems. Ecosystems of the world. 1 (pp. 241–257). Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
  9. Boto, K. G. (1982). Nutrient and organic fluxes in mangroves. In B. F. Clough (Ed.), Mangrove ecosystems in Australia (pp. 239–257). Canberra: Australian National University Press.Google Scholar
  10. Boto, K. G., Alongi, D. M., & Nott, A. L. (1989). Dissolved organic carbon-bacteria interactions at sediment-water interface in a tropical mangrove ecosystem. Marine Ecology Progress Series, 51, 243–251.CrossRefGoogle Scholar
  11. Boto, K. G., & Wellington, J. T. (1983). Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Marine Ecology Progress Series, 11, 63–69.CrossRefGoogle Scholar
  12. Boto, K. G., & Wellington, J. T. (1984). Soil characteristics and nutrient status in a northern Australian mangrove forest. Estuaries, 7, 61–69.CrossRefGoogle Scholar
  13. Bunt, J. S., & Williams, W. T. (1981). Vegetational relationships in the mangroves of tropical Australia. Marine Ecology Progress Series, 4, 349–359.CrossRefGoogle Scholar
  14. Chapman, V. J. (1976). Mangrove vegetation. Vaduz, Germany: J. Cramer.Google Scholar
  15. Chen, R., & Twilley, R. R. (1998). A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology, 86, 37–52.CrossRefGoogle Scholar
  16. Chen, R., & Twilley, R. R. (1999). Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. Estuaries, 22, 955–970.CrossRefGoogle Scholar
  17. Cintron, G., & Schaeffer-Novelli, Y. (1984). Methods of studying mangrove structure. In S. C. Snedaker & J. C. Snedaker (Eds.), The Mangrove ecosystem: Research methods (pp. 91–113). Paris: UNESCO.Google Scholar
  18. Clarke, L. D., & Hannon, N. (1971). The mangrove swamp and salt marsh communities of the Sydney district IV, significance of species interaction. Journal of Ecology, 59, 535–553.CrossRefGoogle Scholar
  19. Dahdouh-Guebas, F., Di Nitto, J. L., Bosire, D., Lo Seen, J. O., & Koedam, D. N. (2005). How effective were mangroves as a defense against the recent tsunami. Current Biology, 15, 443–447.CrossRefGoogle Scholar
  20. De Laune, R. D., Patrick Jr, W. H., & Brannon, J. M. (1976). Nutrient transformations in Louisiana salt marsh soils. Baton Rouge, La., Center for Wetland Resources, Louisiana State University (Sea Grant publication, LSU-T-76–009).Google Scholar
  21. Donahue, R. L., Miller, R. W., Schickluna, S. C. (1985). An introduction to soils and plant growth. Engelwood Cliffs, New Jersey: Prentice-Hall Inc.Google Scholar
  22. Ellision, A. M., Mukherjee, B. B., & Karim, A. (2000). Testing patterns of zonation in mangroves: Scale dependence and environmental correlates in the Sundarbans of Bangladesh. Journal of Ecology, 8, 813–824.CrossRefGoogle Scholar
  23. Epstein, E. (1972). Mineral nutrition of plants: principles and perspectives. New York: Wiley.Google Scholar
  24. Feller, I. C. (1995). Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove Rhizophora mangle). Ecological Monographs, 54, 477–505.CrossRefGoogle Scholar
  25. Feller, I. C., McKee, K. L., Whigham, D. F., & O’Neill, J. P. (2003). Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry, 62, 145–175.CrossRefGoogle Scholar
  26. Forest Survey of India. (1999). The state of forest report. Forest Survey of India, Ministry of Environment and Forests, Dehradun.Google Scholar
  27. Giri, C., Pengra, B., Zhu, Z., Singh, A., & Tieszen, L. L. (2011). Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973–2000. Estuarine Coastal Shelf Science, 73(1–2), 91–100.Google Scholar
  28. Hosakawa, T., Tagawa, H., & Chapman, V. J. (1977). Mangals of Micronesia, Taiwan, Japan, the Philippines and Oceania. In V. J. Chapman (Ed.), Ecosystems of the world. I wet coastal ecosystems (pp. 271–290). Elsevier Scientific, Amsterdam.Google Scholar
  29. Hussain, S. A., & Badola, R. (2010). Valuing mangrove benefits: Contribution of mangrove forests to local livelihoods in Bhitarkanika Conservation Area, East Coast of India. Wetlands Ecology and Management, 18, 321–331.CrossRefGoogle Scholar
  30. Hseu, Z. Y., & Chen, Z. S. (2000). Monitoring the changes of redox potential, pH and electrical conductivity of the mangrove soils in northern Taiwan. Proceedings of National Science Council ROC (B), 24, 143–150.Google Scholar
  31. Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.Google Scholar
  32. Joshi, H., & Ghose, M. (2002). Structural variability and biomass production of mangroves in Lothian island of Sundarbans, India. In S. Javed & A. G. de Soyza (Eds.), Research and management options for Mangrove and Saltmarsh ecosystems (pp. 146–158). Abu Dhabi, UAE: ERWDA.Google Scholar
  33. Joshi, H., & Ghose, M. (2003). Forest structure and species distribution along soil salinity and pH gradient in mangrove swamps of the Sundarbans. Tropical Ecology, 44, 195–204.Google Scholar
  34. Gupta Joshi, H., & Ghose, M. (2014). Community structure, species diversity and aboveground biomass of the Sundarbans mangrove swamps. Tropical Ecology, 55(3), 283–303.Google Scholar
  35. Kathiresan, K., Moorthy, P., & Rajendran, N. (1994). Seedling performance of mangrove Rhizophora apiculata (Rhizophorales: Rhizophoraceae) in different environments. Indian Journal of Marine Sciences, 23, 168–169.Google Scholar
  36. Krauss, K. W., Lovelock, C. E., McKee, K. L., Lo’pez-Hoffmen, L., Ewe, S. M. L., & Sousa, W. P. (2008). Environmental drivers in mangrove establishment and early development: A review. Aquatic Botany, 89, 105–127.CrossRefGoogle Scholar
  37. Lee, S. Y. (1999). Tropical mangrove ecology: Physical and biotic factors influencing ecosystem structure and function. Australian Journal of Ecology, 24, 355–366.CrossRefGoogle Scholar
  38. Lugo, A. E. (1980). Mangrove ecosystems: Successional or steady state? Tropical succession. Biotropica Supple, 12, 65–72.CrossRefGoogle Scholar
  39. Lugo, A. E., & Snedaker, S. C. (1974). The ecology of mangroves. Annual Review of Ecology and Systematics, 5, 39–64.CrossRefGoogle Scholar
  40. MacGuiness, K. A. (1997). Seed predation in a tropical mangrove forest: A test for the dominance predation model in northern Australia. Journal of Tropical Ecology, 13, 293–302.CrossRefGoogle Scholar
  41. Mall, L. P., Singh, V. P., Garge, A., & Pathak, S. M. (1987). Ecological studies on mangrove forests of Ritchie’s Archipelago in relation to substrata. Tropical Ecology, 28, 182–197.Google Scholar
  42. Matilal, S., Mukherjee, B. B., Chatterjee, N., & Gupta, M. D. (1986). Studies on soil & vegetation of mangrove forests of Sundarbans. Indian Journal of Marine Sciences, 15, 181–184.Google Scholar
  43. McKee, K. L. (1993). Soil physicochemical properties and mangrove species distribution—Reciprocal effects? Journal of Ecology, 81, 477–487.CrossRefGoogle Scholar
  44. Middelberg, J. J., Nieuwenhuize, J., Slim, F. J., & Ohowa, B. (1996). Sediment biogeochemistry in an East African mangrove forest (Gazi Bay, Kenya). Biogeochemistry, 34, 133–155.Google Scholar
  45. Mukherjee, B. B., & Mukherjee, J. (1978). Mangroves of Sundarbans, India. Phtyomorphology, 28, 177–192.Google Scholar
  46. Naidoo, G. (1980). Mangrove soils of the Beachwood area, Durban. Journal of South African botany, 46, 293–304.Google Scholar
  47. Nandy Datta, P., & Ghose, M. (2003). Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Botanica Croatica, 62, 37–45.Google Scholar
  48. Naskar, K. R., & Guha-Bakshi, D. N. (1987). Mangrove swamps of the Sundarbans: An ecological perspective. Kolkata, India: Naya Prokash.Google Scholar
  49. Naskar, K. R. (2004). Manual of Indian mangroves (p. 220). Delhi: Daya Publishing House.Google Scholar
  50. Nazim, K., Ahmed, M., Shaukat, S. S., Khan, M. U., & Ali, Q. M. (2013). Age and growth rate estimation of grey mangrove Avicennia Marina (Forsk.) Vierh from Pakistan. Pakistan Journal of Botany, 45(2), 535–542.Google Scholar
  51. Nguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D., & Ball, M. C. (2015). Growth responses of the mangrove Avicennia marina to salinity: Development and function of shoot hydraulic systems require saline conditions. Annals of Botany, 115, 397–407.CrossRefGoogle Scholar
  52. Nickerson, N. H., & Thibodeau, F. R. (1985). Association between pore water sulfide concentrations and the distribution of mangroves. Biogeochemistry, 1, 183–192.CrossRefGoogle Scholar
  53. Okimoto, Y., Nose, A., Ikeda, K., Agarie, S., Oshima, K., Tateda, Y., et al. (2008). An estimation of CO2 fixation capacity in mangrove forest using two methods of CO2 gas exchange and growth curve analysis. Wetlands Ecology and Management, 16, 155–171.CrossRefGoogle Scholar
  54. Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture Circular 939.Google Scholar
  55. Pal, D., Das, A. K., Gupta, S. K., & Sahoo, A. K. (1996). Vegetation pattern and soil characteristics of some mangrove forest zones of the Sundarbans, West Bengal. Indian Agriculturist, 40, 71–78.Google Scholar
  56. Piper, C. S. (1960). Soil and plant analysis. New York: Inter Science Publishers.Google Scholar
  57. Rabinowitz, D. (1978). Early growth of mangrove seedlings in Panama, and a hypothesis concerning the relation of dispersal and zonation. Journal of Biogeography, 5, 113–133.CrossRefGoogle Scholar
  58. Reef, R., Feller, I. C., & Lovelock, C. E. (2010). Nutrition of mangroves. Tree Physiology, 30, 1148–1160.CrossRefGoogle Scholar
  59. Sah, K. D., Sahoo, A. K., Gupta, S. K., & Banerjee, S. K. (1989). Mangrove vegetation of Sundarbans and their effect on the physico-chemical and nutrient status of the soils. Proceedings of the Indian National Science Academy B, 55, 125–132.Google Scholar
  60. Saha, S., & Choudhury, A. (1995). Vegetation analysis of restored and natural mangrove forests in Sagar Island, Sundarbans, East Coast of India. Indian Journal of Marine Sciences, 24, 133–136.Google Scholar
  61. Sample, E. C., et al. (1980). Reactions of phosphate fertilizers in soils. In F. E. Khasawnch, et al. (Eds.), The Role of phosphorus in agriculture. Madison, WI: American Society of Agronomy, Crop Science Society America, Soil Science Society America.Google Scholar
  62. Semeniuk, V. (1983). Mangrove distribution in northwestern Australia in relationship to regional and local freshwater seepage. Vegetatio, 53, 11–31.CrossRefGoogle Scholar
  63. Slattery, W. J., Conyers, M. K., & Aitken, R. L. (1999). Soil pH, aluminium, manganese, and lime requirement. In K. I. Peverill, L. A. Sparrow, & D. J. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 103–128). Collingwood, Australia: CSIRO Publishing.Google Scholar
  64. Smith, T. J., III. (1987). Seed predation in relation to tree dominance and distribution in mangrove forests. Ecology, 68, 266–273.CrossRefGoogle Scholar
  65. Smith, T. J., III. (1988). Differential distribution between subspecies of the mangrove Ceriops tagal: Competitive interactions along a salinity gradient. Aquatic Botany, 32, 79–89.CrossRefGoogle Scholar
  66. Smith, T. J., III. (1992). Forest Structure. In A. I. Robertson & D. M. Alongi (Eds.), Tropical Mangrove Ecosystems (pp. 101–136). New York: American Geophysical Union.CrossRefGoogle Scholar
  67. Subiah, B. V., & Asiza, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soils. Current Science, 25, 259–261.Google Scholar
  68. Tomlinson, P. B. (1986). Botany of Mangroves. Cambridge: Cambridge University Press.Google Scholar
  69. Ukpong, I. E. (1991). The performance and distribution of species along soil salinity gradients of mangrove swamps in southeastern Nigeria. Vegetatio, 95, 63–70.CrossRefGoogle Scholar
  70. Ukpong, I. E. (1998). The composition and distribution of species in relation to soil nutrient gradients in mangrove swamps in South Eastern Nigeria. Tropical Ecology, 39, 55–67.Google Scholar
  71. Valiela, I. (1984). Marine ecological processes. New York: Springer.CrossRefGoogle Scholar
  72. Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F., & Oppelt, N. (2012). Review of valuation methods for mangrove ecosystem services. Ecological Indicators, 23, 431–446.CrossRefGoogle Scholar
  73. Wakushima, S., Kuraishi, S., & Sakurai, N. (1994a). Soil salinity and pH in Japanese mangrove forests and growth of cultivated mangrove plants in different soil conditions. Journal of Plant Research, 107, 39–46.CrossRefGoogle Scholar
  74. Wakushima, S., Kuraishi, S., Sakurai, N., Supappibul, K., & Siripatanadilok, S. (1994b). Stable soil pH of Thai mangroves in dry and rainy seasons and its relation to zonal distribution of mangroves. Journal of Plant Research, 107, 47–52.CrossRefGoogle Scholar
  75. Walkely, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 34, 54–56.Google Scholar
  76. Walsh, G. E. (1974). Mangroves: A review. In R. Reimold & W. Queen (Eds.), Ecology of halophytes (pp. 51–174). New York: Academic Press.CrossRefGoogle Scholar
  77. Walter, H. (1977). Climate. In V. J. Chapman (Ed.), Ecosystems of the world (pp. 61–67). Elsevier, New York: Wet coastal ecosystems.Google Scholar
  78. Watson, J. (1928). Mangrove forests of the Malay Peninsula. Malayan Forest Records 6. Singapore: Fraser & Neave, Ltd..Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Agricultural and Ecological Research UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of BotanyVisva-BharatiBolpur, SantiniketanIndia

Personalised recommendations