Advertisement

A Statistical Study of Platelet Size Decomposition and Related Growth Model

  • Ratan DasguptaEmail author
  • Koushik Biswas
  • Debabrata Dash
Conference paper

Abstract

We study the time-dependent distribution of blood platelet size, and its process of evolution with time, when treated with a mobile ion-carrier chemical A23187 that can penetrate into the cells causing size breakdown. The study helps to understand the role of A23187 as a carrier of drugs into cells, and to investigate signaling pathway in platelets that is of relevance in diagnosing diseases like brain stroke, diabetes, etc. It appears that the size distribution of platelets stabilizes after a time period of 3 h and more. Growth pattern of peak and ebb of the time-dependent platelet size distributions is studied to examine the stability of the process in the long run. A proportionate growth model of size breakdown is proposed.

Keywords

Blood platelet distribution A23187 Proliferation rate Proportionate growth model 

MS Subject Classification:

62P10 65D10 

References

  1. Bernard, A., Fukuda, D. S., Dorman, D. E., Occolowitz, J. L., Debono, M., & Farhner, L. (1979). Microbial transformation of A23187, a divalent cation ionophore antibiotic. Antimicrob Agents Chemotherapy, 16(6), 808–812.CrossRefGoogle Scholar
  2. Cleveland, W. S. (1981). LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35(1), 54.CrossRefGoogle Scholar
  3. Feller, W. (1939). Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Biotheoretica, 5, 11–40.MathSciNetCrossRefGoogle Scholar
  4. Gerrard, J. M., White, J. G., & Rao, G. H. R. (1974). Effects of the Ionophore A23187 on Blood Platelets II. Influence on Ultrastructure. The American Journal of Pathology, 77(2), 151–166.Google Scholar
  5. Kendall, D. G. (1948). On the generalized birth and death process. The Annals of Mathematical Statistics, 1–15.MathSciNetCrossRefGoogle Scholar
  6. Khinchin, A. Ya. (1938). On unimodal distributions. Trams. Research Institute of Mathematics and Mechanics (in Russian). University of Tomsk. 2(2), 1–7.Google Scholar
  7. Mokaddis, G. S. (1985). A generalized age-dependent branching process and its limit distribution. Indian Journal of Pure and Applied Mathematics, 16(12), 1399–1406.MathSciNetzbMATHGoogle Scholar
  8. Reinsch, C. H. (1967). Smoothing by spline functions. Numerische Mathematik, 10, 177–183.  https://doi.org/10.1007/BF02162161.MathSciNetCrossRefGoogle Scholar
  9. Stratton, H. H., & Tucker, H. G. (1964). Limit distributions of a branching stochastic process. The Annals of Mathematical Statistics, 35, 557–565.MathSciNetCrossRefGoogle Scholar
  10. Tardi, P., Choice, E., Masin, D., Redelmeier, T., Bally, M., & Madden, T. D. (2000). Liposomal encapsulation of topotecan enhances anticancer efficacy in Murine and Human Xenograft models. Cancer Research, 60(13), 3389–3393.Google Scholar
  11. White, J. G., Rao, G. H. R., & Gerrard, J. M. (1974). Effects of the ionophore A23187 on blood platelets. I. Influence on aggregation and secretion. The American Journal of Pathology, 77, 135–150.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ratan Dasgupta
    • 1
    Email author
  • Koushik Biswas
    • 2
  • Debabrata Dash
    • 3
  1. 1.Theoretical Statistics and Mathematics UnitIndian Statistical InstituteKolkataIndia
  2. 2.Regional Institute of OphthalmologyMedical College HospitalKolkataIndia
  3. 3.Department of Biochemistry, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations