Advertisement

Towards High Density sEMG (HD-sEMG) Acquisition Approach for Biometrics Applications

  • Mariam Al Harrach
  • Sofiane Boudaoud
  • Amine Nait-aliEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

This is the third chapter of this book dedicated to EMG biometrics modality. The purpose is to highlight a Multi-Channel technique based on a High Density sEMG (HD-sEMG) acquisition. In fact, HD-sEMG recording systems can be used to overcome the limitation of classical bipolar and monopolar sEMG recording systems. Consequently, in the considered concept, HD-sEMG system generates 64 EMG signals from which an EMG image is constructed and processed. Thereupon, it will be explained how one can deploy this technique in a biometric scheme.

References

  1. 1.
    De Luca, C.J.: The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163 (1997)CrossRefGoogle Scholar
  2. 2.
    Merletti, R., Parker, P.A.: Electromyography: physiology, engineering, and non-invasive applications. IEEE Press, Piscataway; Wiley-Interscience, Hoboken (2004)Google Scholar
  3. 3.
    Staudenmann, D., Roeleveld, K., Stegeman, D.F., van Dieen, J.H.: Methodological aspects of SEMG recordings for force estimation—a tutorial and review. J. Electromyogr. Kinesiol. 20(3), 375–387 (2010)CrossRefGoogle Scholar
  4. 4.
    Disselhorst-Klug, C., Schmitz-Rode, T., Rau, G.: Surface electromyography and muscle force: limits in sEMG–force relationship and new approaches for applications. Clin. Biomech. 24(3), 225–235 (2009)CrossRefGoogle Scholar
  5. 5.
    Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10(5), 361–374 (2000)CrossRefGoogle Scholar
  6. 6.
    Staudenmann, D., Kingma, I., Daffertshofer, A., Stegeman, D.F., van Dieen, J.H.: Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis. IEEE Trans. Biomed. Eng. 53(4), 712–719 (2006)CrossRefGoogle Scholar
  7. 7.
    Merletti, R., Afsharipour, B., Piervirgili, G.: High density surface EMG technology. In: Converging Clinical and Engineering Research on Neurorehabilitation, no. 1 in Biosystems & Biorobotics, pp. 1205–1209. Springer Heideblerg, BerlinGoogle Scholar
  8. 8.
    Rojas-Martinez, M., Mananas, M.A., Alonso, J.F.: High-density surface EMG maps from upper-arm and forearm muscles. J. NeuroEng. Rehab. 9 (2012)CrossRefGoogle Scholar
  9. 9.
    Daley, H., Englehart, K., Hargrove, L., Kuruganti, U.: High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J. Electromyogr. Kinesiol. 22(3), 478–484 (2012)CrossRefGoogle Scholar
  10. 10.
    van Dijk, J.P., Blok, J.H., Lapatki, B.G., van Schaik, I.N., Zwarts, M.J., Stegeman, D.F.: Motor unit number estimation using high-density surface electromyography. Clin. Neurophysiol. 119(1), 33–42 (2008)CrossRefGoogle Scholar
  11. 11.
    Kleine, B.U., van Dijk, J.P., Lapatki, B.G., Zwarts, M.J., Stegeman, D.F.: Using twodimensional spatial information in decomposition of surface EMG signals. J. Electromyogr. Kinesiol. 17(5), 535–548 (2007)CrossRefGoogle Scholar
  12. 12.
    Drost, G., Stegeman, D.F., van Engelen, B.G., Zwarts, M.J.: Clinical applications of highdensity surface emg: a systematic review. J. Electromyogr. Kinesiol. 16(6), 586–602 (2006)CrossRefGoogle Scholar
  13. 13.
    Al Harrach, M., Boudaoud, S., Hassan, M., Ayachi, F.S., Gamet, D., Grosset, J.F., Marin, : Denoising of HD-sEMG signals using canonical correlation analysis. Med. Biol. Eng. Comput. 1–14 (2016)Google Scholar
  14. 14.
    Al Harrach, M., Carriou, V., Boudaoud, S., Laforet, J., Marin F.: Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: a simulation study. Comput. Biol. Med. 34–47 (2017)CrossRefGoogle Scholar
  15. 15.
    Vieira, T.M., Merletti, R., Mesin, L.: Automatic segmentation of surface EMG images: Improving the estimation of neuromuscular activity. J. Biomech. 43(11), 2149–2158 (2010)CrossRefGoogle Scholar
  16. 16.
    Merletti, R., Holobar, A., Farina, D.: Analysis of motor units with high-density surface electromyography. J. Electromyogr. Kinesiol. 18(6), 879–890 (2008)CrossRefGoogle Scholar
  17. 17.
    Sahoo, P.K., Soltani, S., Wong, A.K.C.: A survey of thresholding techniques. Comput. Vision Graph. Image Process. 41, 233–260 (1988)CrossRefGoogle Scholar
  18. 18.
    Heijmans, H.J.A.M.: Mathematical morphology: a modern approach in image processing based on algebra and geometry. SIAM Rev. 37(1), 1–36 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Al Harrach, M., Boudaoud, S., Carriou, V., Laforet, J., Marin, F.: Investigation of the HD-sEMG probability density function shapes with varying muscle force using data fusion and shape descriptors. Comput. Biol. Med. 44–58 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mariam Al Harrach
    • 1
  • Sofiane Boudaoud
    • 2
  • Amine Nait-ali
    • 3
    Email author
  1. 1.Polytech Angers, LARISAngersFrance
  2. 2.Laboratoire BMBI CompiègneUniversité de Technologie de CompiègneCompiègneFrance
  3. 3.Université Paris-Est, LISSI, UPECVitry sur SeineFrance

Personalised recommendations