Advertisement

EEG Biometrics for Person Verification

  • Bacary Goudiaby
  • Alice Othmani
  • Amine Nait-aliEmail author
Chapter
Part of the Series in BioEngineering book series (SERBIOENG)

Abstract

The purpose of this chapter is to explore the idea of using EEG signals as a biometric modality to recognize individuals. Considered as a variant of Brain Computer Interface (BCI), the concept presented in this chapter deals with a Multi-Channel EEG using Emotiv Epoc system. Mainly, a special interest will be addressed to EEG maps analysis for persons recognition. For this purpose, a generic schema is considered, namely pre-processing, feature extraction, Matching/classification leading to a verification decision.

References

  1. 1.
    Berger, H.: Über das elektrenkephalogramm des menschen. Arch. Psychiatr Nervenkr 87, 527–570 (1929)CrossRefGoogle Scholar
  2. 2.
    Berger, H.: Über das Elektrenkephalogramm des Menschen. XIII [The human electroencephalogram]. Archiv für Psychiatrie und Nervenkrankheiten 106, 576–584 (1937)CrossRefGoogle Scholar
  3. 3.
    Szurhaj, W., Lamblin, M.-D., Kaminska, A., Sediri, H.: EEG guidelines in the diagnosis of brain death. Neurophysiol. Clin./Clin. Neurophysiol. 45(1), pp. 97–104, ISSN 0987-7053 (2015)CrossRefGoogle Scholar
  4. 4.
    Jayarathne, I., Cohen, M., Amarakeerthi, S.: Survey of EEG-based biometric authentication. In: 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST), Taichung, pp. 324–329 (2017)Google Scholar
  5. 5.
    Basar, E., Düzgün, A.: How is the brain working?: research on brain oscillations and connectivities in a new “take-off” state. Int. J. Psychophysiol. 103, 3–11 (2016)CrossRefGoogle Scholar
  6. 6.
    Bassett, D.S., Gazzaniga, M.S.: Understanding complexity in the human brain. Trends in Cogn. Sci. 15(5), 200–209, ISSN 1364-6613 (2011)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Sörnmo, L., Laguna, P.: Chapter 2—the electroencephalogram—a brief background. In: Sörnmo, L., Laguna, P. (eds.) In Biomedical Engineering, Bioelectrical Signal Processing in Cardiac and Neurological Applications, pp. 25–53. Academic Press, ISBN 9780124375529 (2005)CrossRefGoogle Scholar
  9. 9.
    Kerbaj, D., Hassan, W., Nait-Ali, A.: Verifying a personas identity using brain responses to visual stimuli. In: 2017 2nd International Conference on Bio-engineering for Smart Technologies (BioSMART), Paris, pp. 1–6 (2017)Google Scholar
  10. 10.
    Marks, W.J.,, Laxer, K.D.: Chapter 7—invasive clinical neurophysiology in epilepsy and movement disorders. In: Aminoff, M.J. (eds.) Aminoff’’s electrodiagnosis in clinical neurology (6th edn), pp. 165–185. W.B. Saunders. ISBN 9781455703081 (2012)Google Scholar
  11. 11.
  12. 12.
    Kang, J.-H., Jo, Y.C., Kim, S.P.: Electroencephalographic feature evaluation for improving personal authentication performance. Neurocomputing, 287, pp. 93–101, ISSN 0925-2312 (2018)CrossRefGoogle Scholar
  13. 13.
    Chauhan, S., Arora, A.S., Kaul, A.: A survey of emerging biometric modalities. Procedia Comput. Sci. 2, 213–218, ISSN 1877-0509.  https://doi.org/10.1016/j.procs.2010.11.027 (2010)CrossRefGoogle Scholar
  14. 14.
    Reshmi, K.C., Muhammed, P.I., Priya, V.V., Akhila, V.A.: A novel approach to brain biometric user recognition. Procedia Technol. 25, 240–247, ISSN 2212-0173 (2016)CrossRefGoogle Scholar
  15. 15.
    Eva, O.D., Lazar, A.M.: Comparison of classifiers and statistical analysis for EEG signals used in brain computer interface motor task paradigm. Int. J. Adv. Res. Artif. Intell. (IJARAI), 4(1) (2015)Google Scholar
  16. 16.
    Voznenko, T.I., Chepin, E.V., Urvanov, G.A.: The control system based on extended BCI for a robotic wheelchair. Procedia Comput. Sci 123, 522–527, ISSN 1877-0509 (2018)CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Yao, L., Sheng, Q., Kanhere, S., Gu, T., Zhang, D.: Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals.  https://doi.org/10.1109/percom.2018.8444575 (2018)
  18. 18.
    Nait-Ali, A.: Hidden biometrics: towards using biosignals and biomedical images for security applications. In: International Workshop on Systems, Signal Processing and their Applications, WOSSPA, Tipaza, pp. 352–356 (2011)Google Scholar
  19. 19.
    Rodrigues, R.N., Ling, L.L., Govindaraju, V.: Robustness of multimodal biometric methods against spoof attacks. J. Vis. Lang. Comput. 20, 169–179 (2009)CrossRefGoogle Scholar
  20. 20.
    Rao, T.K., Lakshmi, M.R., Prasad, T.: An exploration on brain computer interface and its recent trends. Int. J. Adv. Res. Artif. Intell. 1, 17 (2012)  https://doi.org/10.14569/ijarai.2012.010804
  21. 21.
    Sweeney, K.T., Ward, T.E., McLoone, S.F.: Artifact removal in physiological signals—practices and possibilities. IEEE Trans. Inf Technol. Biomed. 16(3), 488–500 (2012)CrossRefGoogle Scholar
  22. 22.
    Kumar, P.S., Arumuganathan, R., Sivakumar, K., Vimal, C.: Removal of artifacts from EEG signals using adaptive filter through wavelet transform. In: 2008 9th International Conference on Signal Processing, Beijing, pp. 2138–2141 (2008)Google Scholar
  23. 23.
    Kumar, P.S., Arumuganathan, R., Vimal, C.: Wavelet based ocular artifact removal from EEG signals using ARMA method and adaptive filtering. In: Proceedings—2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, vol. 3 (2009).  https://doi.org/10.1109/icicisys.2009.5358090
  24. 24.
    Croft, R.J., Barry, R.J.: Removal of ocular artifacts from the EEG: a review. J. Clin. Neurophysiol. 30, 5–19 (2000)CrossRefGoogle Scholar
  25. 25.
    Daly, I., Billinger, M., Scherer, R., Mueller-Putz, G.: On the automated removal of artifacts related to head movement from the EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 21(3), 427–434 (2013)CrossRefGoogle Scholar
  26. 26.
    Ngoc, P.P., Hai, V.D., Bach, N.C., Van Binh, P.: EEG signal analysis and artifact removal by wavelet transform. In: Toi, V., Lien Phuong, T. (eds.) 5th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, vol. 46. Springer, Cham (2015)Google Scholar
  27. 27.
    Edla, D.R., Ansari, M.F., Chaundhary, N., Dodila, S.: Classification of facial expressions from EEG signals using wavelet packet transform and SVM for wheelchair control operations. Procedia Comput. Sci. 132, 1467–1476, ISSN 1877-0509 (2018)CrossRefGoogle Scholar
  28. 28.
    Puce, A., Hämäläinen, M.S.: A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci. 7(6), 58 (2017)CrossRefGoogle Scholar
  29. 29.
    Voznenko, T.I., Dyumin, A.A., Aksenova, E.V., Gridnev, A.A., Delov, V.A.: The experimental study of ‘Unwanted Music’ noise pollution influence on command recognition by brain-computer interface. Procedia Comput. Sci. 123, 528–533, ISSN 1877-0509 (2018)CrossRefGoogle Scholar
  30. 30.
    Zhou, S., Allison, B.Z., Kübler, A., Cichocki, A., Wang, X., Jin, J.: Effects of background music on objective and subjective performance measures in an auditory BCI. Front. Comput. Neurosci. 10, 105 (2016).  https://doi.org/10.3389/fncom.2016.00105CrossRefGoogle Scholar
  31. 31.
    Motamedi-Fakhr, Shayan, Moshrefi-Torbati, M., Hill, Martyn, Hill, Catherine, White, Paul: Signal processing techniques applied to human sleep EEG signals—a review. Biomed. Signal Process. Control 10, 21–33 (2014).  https://doi.org/10.1016/j.bspc.2013.12.003CrossRefGoogle Scholar
  32. 32.
    Chuang, J., Nguyen, H., Wang, C., Johnson, B.: I think, therefore I am: usability and security of authentication using brainwaves. In: International Conference on Financial Cryptography and Data Security, pp. 1–16. Springer (2013)Google Scholar
  33. 33.
    Jayarathne, I., Cohen, M., Amarakeerthi, S.: BrainID: development of an EEG-based biometric authentication system. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, pp. 1–6 (2016)Google Scholar
  34. 34.
    Ngoc P.P., Hai, V.D., Bach N.C., Van Binh, P.: EEG signal analysis and artifact removal by wavelet transform. In: Toi, V., Lien Phuong, T. (eds) 5th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, vol. 46. Springer, Cham (2015)Google Scholar
  35. 35.
    Hazarika, N., Chen, J.Z., Tsoi, A.C., Sergejew, A.: Classification of EEG signals using the wavelet transform. In: Proceedings of 13th International Conference on Digital Signal Processing, Santorini, Greece, vol. 1, pp. 89–92.  https://doi.org/10.1109/icdsp.1997.627975 (1997)
  36. 36.
    Altahat, S., Chetty, G., Tran, D., Ma, W.: Analysing the robust EEG channel set for person authentication. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds.) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science, vol. 9492. Springer, Cham (2015)CrossRefGoogle Scholar
  37. 37.
    Jayarathne, I., Cohen, M. Amarakeerthi, S.: BrainID: development of an EEG-based biometric authentication system. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, pp. 1–6 (2016)Google Scholar
  38. 38.
    Poulos, M., Rangoussi, M., Alexandris, N.: Neural network based person identification using EEG features. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), Phoenix, AZ, USA, vol. 2, pp. 1117–1120 (1999)Google Scholar
  39. 39.
    Laka, P., Mazurczyk, W.: User perspective and security of a new mobile authentication method. Telecommun. Syst. (2018)  https://doi.org/10.1007/s11235-018-0437-1CrossRefGoogle Scholar
  40. 40.
    Blondet, M.V.R., Khalifian, N., Kurtz, K.J., Laszlo, S., Jin, Z.: Brainwaves as authentication method: proving feasibility under two different approaches. In: 2014 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, pp. 1–2.  https://doi.org/10.1109/nebec.2014.6972734 (2014)
  41. 41.
    Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: A study on the feasibility of using EEG signals for authentication purpose. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R.M. (eds.) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol. 8227. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  42. 42.
    Jagadiswary, D., Saraswady, D.: Biometric authentication using fused multimodal biometric. Procedia Comput. Sci. 85, 109–116, ISSN 1877-0509 (2016)CrossRefGoogle Scholar
  43. 43.
    Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: A new multi-level approach to EEG based human authentication using eye blinking. Pattern Recogn. Lett. 82(2), pp. 216–225, ISSN 0167-8655 (2016)CrossRefGoogle Scholar
  44. 44.
    Wang, M., Abbass, H.A., Hu, J.: Continuous authentication using EEG and face images for trusted autonomous systems. In: 2016 14th Annual Conference on Privacy, Security and Trust (PST), Auckland, 368–375 (2016)Google Scholar
  45. 45.
    Palaniappan, R.: Electroencephalogram signals from imagined activities: a novel biometric identifier for a small population. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 604–611. Springer (2006)Google Scholar
  46. 46.
    Zhang, X., Yao, L., Chen, K., Wang, X., Sheng, Q.Z., Gu, T.: DeepKey: an EEG and gait based dual-authentication system. CoRR abs/1706.01606 (2017): n. pagGoogle Scholar
  47. 47.
    Ashby, C., Bhatia, A., Tenore, F., Vogelstein, J.: Low-cost electroencephalogram (EEG) based authentication. In: 2011 5th International IEEE/EMBS Conference on Neural Engineering, Cancun, pp. 442–445 (2011)Google Scholar
  48. 48.
    Tektaş, F., Yücer, Ş. Kanak, A.: A new approach in border security applications with EEG biometrics. In: 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, pp. 1–4 (2017)Google Scholar
  49. 49.
    Nakamura, T., Goverdovsky, V., Mandic, D.P.: In-ear EEG biometrics for feasible and readily collectable real-world person authentication. IEEE Trans. Inf. Forensics Secur. 13(3), 648–661 (2018)CrossRefGoogle Scholar
  50. 50.
    Singh, B., Mishra, S., Tiwary, U.S.: EEG based biometric identification with reduced number of channels. In: 2015 17th International Conference on Advanced Communication Technology (ICACT), Seoul, pp. 687–691 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Bacary Goudiaby
    • 1
  • Alice Othmani
    • 1
  • Amine Nait-ali
    • 1
    Email author
  1. 1.Université Paris-Est, LISSI, UPECVitry sur SeineFrance

Personalised recommendations