Electrospun and Electrosprayed Scaffolds for Tissue Engineering

  • Natasha Maurmann
  • Laura-Elena Sperling
  • Patricia PrankeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1078)


Electrospinning and electrospraying technologies provide an accessible and universal synthesis method for the continuous preparation of nanostructured materials. This chapter introduces recent uses of electrospun and electrosprayed scaffolds for tissue regeneration applications. More recent in vitro and in vivo of electrospun fibers are also discussed in relation to soft and hard tissue engineering applications. The focus is made on the bone, vascular, skin, neural and soft tissue regeneration. An introduction is presented regarding the production of biomaterials made by synthetic and natural polymers and inorganic and metallic materials for use in the production of scaffolds for regenerative medicine. For this proposal, the following techniques are discussed: electrospraying, co-axial and emulsion electrospinning and bio-electrospraying. Tissue engineering is an exciting and rapidly developing field for the understanding of how to regenerate the human body.


Electrospray Electrospinning Biomaterials Regenerative medicine Coaxial Bio-electrospray 


  1. 1.
    Acevedo F, Villegas P, Urtuvia V et al (2018) Bacterial polyhydroxybutyrate for electrospun fiber production. Int J Biol Macromol 106:692–697. CrossRefPubMedGoogle Scholar
  2. 2.
    Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24:401–416CrossRefGoogle Scholar
  3. 3.
    Altomare L, Farè S, Tanzi MC (2017) Bio-instructive scaffolds for muscle regeneration. In: Bio-instructive scaffolds for musculoskeletal tissue engineering and regenerative medicine. Elsevier, pp 161–186Google Scholar
  4. 4.
    Andreu N, Thomas D, Saraiva L et al (2012) In vitro and in vivo interrogation of bio-sprayed cells. Small 8:2495–2500. CrossRefPubMedGoogle Scholar
  5. 5.
    Aslan B, Guler S, Tevlek A, Aydin HM (2017) Evaluation of collagen foam, poly( <scp>l</scp> -lactic acid) nanofiber mesh, and decellularized matrices for corneal regeneration. J Biomed Mater Res Part B Appl Biomater.
  6. 6.
    Baker S, Sigley J, Helms CC et al (2012) The mechanical properties of dry, electrospun fibrinogen fibers. Mater Sci Eng C 32:215–221. CrossRefGoogle Scholar
  7. 7.
    Bartolovic K, Mongkoldhumrongkul N, Waddington SN et al (2010) The differentiation and engraftment potential of mouse hematopoietic stem cells is maintained after bio-electrospray. Analyst 135:157–164. CrossRefPubMedGoogle Scholar
  8. 8.
    Baudequin T, Gaut L, Mueller M et al (2017) The osteogenic and Tenogenic differentiation potential of C3H10T1/2 (mesenchymal stem cell model) cultured on PCL/PLA electrospun scaffolds in the absence of specific differentiation medium. Materials (Basel) 10:1387. CrossRefGoogle Scholar
  9. 9.
    Bhattarai N, Li Z, Edmondson D, Zhang M (2006) Alginate-based Nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18:1463–1467. CrossRefGoogle Scholar
  10. 10.
    Bhowmick S, Rother S, Zimmermann H et al (2017) Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application – the role of chondroitin sulfate and sulfated hyaluronan. Mater Sci Eng C 79:15–22. CrossRefGoogle Scholar
  11. 11.
    Bock N, Woodruff MA, Hutmacher DW, Dargaville TR (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers (Basel) 3:131–149. CrossRefGoogle Scholar
  12. 12.
    Bohr A, Kristensen J, Dyas M et al (2012) Release profile and characteristics of electrosprayed particles for oral delivery of a practically insoluble drug. J R Soc Interface 9:2437–2449. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Braghirolli DI, Helfer VE, Chagastelles PC et al (2017) Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells. Biomed Mater 12:25003. CrossRefGoogle Scholar
  14. 14.
    Braghirolli DI, Steffens D, Pranke P (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 19:743–753. CrossRefPubMedGoogle Scholar
  15. 15.
    Bürck J, Heissler S, Geckle U et al (2013) Resemblance of electrospun collagen nanofibers to their native structure. Langmuir 29:1562–1572. CrossRefPubMedGoogle Scholar
  16. 16.
    Chamundeswari VN, Yuan Siang L, Jin Chuah Y et al (2017) Sustained releasing sponge-like 3D scaffolds for bone tissue engineering applications. Biomed Mater 13:15019. CrossRefGoogle Scholar
  17. 17.
    Chasin M, Langer R (1990) Biodegradable polymers as drug delivery systems. Marcel Dekker, New YorkGoogle Scholar
  18. 18.
    Coimbra P, Santos P, Alves P et al (2017) Coaxial electrospun PCL/gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids Surfaces B Biointerfaces 159:7–15. CrossRefPubMedGoogle Scholar
  19. 19.
    Cornejo Bravo JM, Villarreal Gómez LJ, Serrano Medina A (2016) Electrospinning for drug delivery systems: drug incorporation techniques. In: Electrospinning – material, techniques, and biomedical applications. InTech, LondonGoogle Scholar
  20. 20.
    CR R, PS S, O M, et al (2017) Nanochitosan enriched poly ε-caprolactone electrospun wound dressing membranes: A fine tuning of physicochemical properties, hemocompatibility and curcumin release profile. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2017.11.035Google Scholar
  21. 21.
    Cui W, Li X, Zhou S, Weng J (2008) Degradation patterns and surface wettability of electrospun fibrous mats. Polym Degrad Stab 93:731–738. CrossRefGoogle Scholar
  22. 22.
    Cui W, Zhou Y, Chang J (2010) Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater 11:14108. CrossRefGoogle Scholar
  23. 23.
    Dadras Chomachayi M, Solouk A, Akbari S et al (2018) Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. J Biomed Mater Res Part A. 106:1092. CrossRefGoogle Scholar
  24. 24.
    Damaraju SM, Shen Y, Elele E et al (2017) Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials 149:51–62. CrossRefPubMedGoogle Scholar
  25. 25.
    De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3:133–149CrossRefGoogle Scholar
  26. 26.
    Di Martino A, Liverani L, Rainer A et al (2011) Electrospun scaffolds for bone tissue engineering. Musculoskelet Surg 95:69–80. CrossRefPubMedGoogle Scholar
  27. 27.
    Enayati MS, Behzad T, Sajkiewicz P et al (2018) Development of electrospun poly (vinyl alcohol)-based bionanocomposite scaffolds for bone tissue engineering. J Biomed Mater Res Part A. 106:1111. CrossRefGoogle Scholar
  28. 28.
    Fan L, Wang H, Zhang K et al (2012) Vitamin C-reinforcing silk fibroin nanofibrous matrices for skin care application. RSC Adv 2:4110. CrossRefGoogle Scholar
  29. 29.
    Fukunishi T, Best CA, Ong CS et al (2018) Role of bone marrow mononuclear cell seeding for nanofiber vascular grafts. Tissue Eng Part A 24:135–144. CrossRefPubMedGoogle Scholar
  30. 30.
    Fukunishi T, Shoji T, Shinoka T (2017) Nanofiber composites in vascular tissue engineering. In: Nanofiber composites for biomedical applications. Elsevier, Duxford, pp 455–481CrossRefGoogle Scholar
  31. 31.
    Fullana MJ, Wnek GE (2012) Electrospun collagen and its applications in regenerative medicine. Drug Deliv Transl Res 2:313–322. CrossRefPubMedGoogle Scholar
  32. 32.
    Wnek GE, Carr ME, Simpson DG, Bowlin GL (2002) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216. CrossRefGoogle Scholar
  33. 33.
    Ghorbani S, Tiraihi T, Soleimani M (2018) Differentiation of mesenchymal stem cells into neuron-like cells using composite 3D scaffold combined with valproic acid induction. J Biomater Appl 32:702–715. CrossRefPubMedGoogle Scholar
  34. 34.
    Gomes S, Rodrigues G, Martins G et al (2017) Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering. Int J Biol Macromol 102:1174–1185. CrossRefPubMedGoogle Scholar
  35. 35.
    Goonoo N, Bhaw-Luximon A, Jonas U et al (2017) Enhanced differentiation of human Preosteoblasts on electrospun blend Fiber Mats of Polydioxanone and anionic sulfated polysaccharides. ACS Biomater Sci Eng 3:3447–3458. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Goyal R, Vega ME, Pastino AK et al (2017) Development of hybrid scaffolds with natural extracellular matrix deposited within synthetic polymeric fibers. J Biomed Mater Res Part A 105:2162–2170. CrossRefGoogle Scholar
  37. 37.
    Gulfam M, Kim J, Lee JM et al (2012) Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir 28:8216–8223. CrossRefPubMedGoogle Scholar
  38. 38.
    Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32:455–482. CrossRefGoogle Scholar
  39. 39.
    Hall RP, Ogilvie CM, Aarons E, Jayasinghe SN (2008) Genetic, genomic and physiological state studies on single-needle bio-electrosprayed human cells. Analyst 133:1347–1351. CrossRefPubMedGoogle Scholar
  40. 40.
    Hanemann T, Szabó DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials (Basel) 3:3468–3517. CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hsu C-N, Lee P-Y, Tuan-Mu H-Y et al (2018) Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering. J Biomed Mater Res Part B Appl Biomater 106:760–770. CrossRefPubMedGoogle Scholar
  42. 42.
    Huang L, Nagapudi K, Apkarian RP, Chaikof EL (2001) Engineered collagen–PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12:979–993. CrossRefPubMedGoogle Scholar
  43. 43.
    Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253. CrossRefGoogle Scholar
  44. 44.
    Huang Z-M, Zhang Y, Ramakrishna S, Lim C (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer (Guildf) 45:5361–5368. CrossRefGoogle Scholar
  45. 45.
    Ijsebaert JC, Geerse KB, Marijnissen JCM et al (2001) Electro-hydrodynamic atomization of drug solutions for inhalation purposes. J Appl Physiol 91:2735–2741. CrossRefPubMedGoogle Scholar
  46. 46.
    Jayaraman P, Gandhimathi C, Venugopal JR et al (2015) Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv Drug Deliv Rev 94:77–95CrossRefGoogle Scholar
  47. 47.
    Jayasinghe SN, Eagles PAM, Qureshi AN (2006a) Electric field driven jetting: an emerging approach for processing living cells. Biotechnol J 1:86–94. CrossRefPubMedGoogle Scholar
  48. 48.
    Jayasinghe SN, Qureshi AN, Eagles PAM (2006b) Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2:216–219. CrossRefPubMedGoogle Scholar
  49. 49.
    Ji Y, Ghosh K, Shu XZ et al (2006) Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials 27:3782–3792. CrossRefPubMedGoogle Scholar
  50. 50.
    Joy J, Pereira J, Aid-Launais R et al (2018) Gelatin — oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. Int J Biol Macromol 107:1922–1935. CrossRefPubMedGoogle Scholar
  51. 51.
    Kaplan J, Grinstaff M (2015) Fabricating Superhydrophobic polymeric materials for biomedical applications. J Vis Exp.
  52. 52.
    Khalili S, Nouri Khorasani S, Razavi M et al (2018) Nanofibrous scaffolds with biomimetic structure. J Biomed Mater Res Part A 106:370–376. CrossRefGoogle Scholar
  53. 53.
    Kijeńska E, Swieszkowski W (2017) General requirements of electrospun materials for tissue engineering: setups and strategy for successful electrospinning in laboratory and industry. In: Electrospun materials for tissue engineering and biomedical applications: research, design and commercialization. Elsevier, Duxford, pp 43–56CrossRefGoogle Scholar
  54. 54.
    Kim TH, Jung Y, Kim SH (2018) Nanofibrous electrospun heart Decellularized extracellular matrix-based hybrid scaffold as wound dressing for reducing scarring in wound healing. Tissue Eng Part A tentea 2017:0318. CrossRefGoogle Scholar
  55. 55.
    Kung FH, Sillitti D, Shrirao AB et al (2018) Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering. J Tissue Eng Regen Med 12:e2010. CrossRefPubMedGoogle Scholar
  56. 56.
    Langer R, Vacanti JP (1993) Tissue engineering Science 260:920–926Google Scholar
  57. 57.
    Lannutti J, Reneker D, Ma T et al (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27:504–509. CrossRefGoogle Scholar
  58. 58.
    Larsen G, Velarde-Ortiz R, Minchow K et al (2003) A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol−gel chemistry and electrically forced liquid jets. J Am Chem Soc 125:1154–1155. CrossRefPubMedGoogle Scholar
  59. 59.
    Leach MK, Feng Z-Q, Tuck SJ, Corey JM (2011) Electrospinning fundamentals: optimizing solution and apparatus parameters. J Vis Exp 2494.
  60. 60.
    Lee KY, Jeong L, Kang YO et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032. CrossRefPubMedGoogle Scholar
  61. 61.
    Li D, McCann JT, Xia Y, Marquez M (2006) Electrospinning: a simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 89:1861–1869. CrossRefGoogle Scholar
  62. 62.
    Li Y, Bou-Akl T (2016) Electrospinning in tissue engineering. In: Electrospinning – material, techniques, and biomedical applications. InTech, LondonGoogle Scholar
  63. 63.
    Lim J, You M, Li J, Li Z (2017) Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C 79:917–929. CrossRefGoogle Scholar
  64. 64.
    Lin C, Liu C, Zhang L et al (2017) Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering. Int J Mol Med.
  65. 65.
    Lin S, Chen M, Jiang H et al (2016) Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids Surfaces B Biointerfaces 139:156–163. CrossRefPubMedGoogle Scholar
  66. 66.
    Liu C, Wang C, Zhao Q et al (2018) Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Biomed Mater 13:044107. CrossRefPubMedGoogle Scholar
  67. 67.
    Loscertales IG, Barrero A, Guerrero I et al (2002) Micro/Nano encapsulation via electrified coaxial liquid jets. Science (80- ) 295:1695–1698. CrossRefGoogle Scholar
  68. 68.
    Lu J-W, Zhu Y-L, Guo Z-X et al (2006) Electrospinning of sodium alginate with poly(ethylene oxide). Polymer (Guildf) 47:8026–8031. CrossRefGoogle Scholar
  69. 69.
    Lu Y, Huang J, Yu G et al (2016) Coaxial electrospun fibers: applications in drug delivery and tissue engineering. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 8:654–677. CrossRefPubMedGoogle Scholar
  70. 70.
    Luo J, Zhang H, Zhu J et al (2017) 3-D mineralized silk fibroin/Polycaprolactone composite scaffold modified with Polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Colloids Surfaces B Biointerfaces 163:369. CrossRefPubMedGoogle Scholar
  71. 71.
    Lv F, Wang J, Xu P et al (2017) A conducive bioceramic/polymer composite biomaterial for diabetic wound healing. Acta Biomater 60:128–143. CrossRefPubMedGoogle Scholar
  72. 72.
    Ma M-X, Liu Q, Ye C et al (2017) Preparation of P3HB4HB/(gelatin + PVA) composite scaffolds by coaxial electrospinning and its biocompatibility evaluation. Biomed Res Int 2017:1–12. CrossRefGoogle Scholar
  73. 73.
    Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–198CrossRefGoogle Scholar
  74. 74.
    Masaeli E, Morshed M, Rasekhian P et al (2012) Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions? J Biomed Mater Res Part A 100A:1907–1918. CrossRefGoogle Scholar
  75. 75.
    Maurmann N, Pereira DP, Burguez D et al (2017) Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering. Biomed Phys Eng Express 3:45005. CrossRefGoogle Scholar
  76. 76.
    Mele E (2016) Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. J Mater Chem B 4:4801–4812. CrossRefGoogle Scholar
  77. 77.
    Mongkoldhumrongkul N, Best S, Aarons E, Jayasinghe SN (2009) Bio-electrospraying whole human blood: analysing cellular viability at a molecular level. J Tissue Eng Regen Med 3:562–566. CrossRefPubMedGoogle Scholar
  78. 78.
    Nadim A, Khorasani SN, Kharaziha M, Davoodi SM (2017) Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Mater Sci Eng C 78:47–58. CrossRefGoogle Scholar
  79. 79.
    Naebe M, Lin T, Wang X (2010) Carbon nanotubes reinforced electrospun polymer Nanofibres. In: Nanofibers. InTech, LondonGoogle Scholar
  80. 80.
    Naseri-Nosar M, Salehi M, Hojjati-Emami S (2017) Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 103:701–708. CrossRefPubMedGoogle Scholar
  81. 81.
    Naves LB, Almeida L, Rajamani L (2017) Nanofiber composites in skin tissue engineering. In: Nanofiber composites for biomedical applications. Elsevier, Duxford, pp 275–300CrossRefGoogle Scholar
  82. 82.
    Nguyen DN, Clasen C, Van den Mooter G (2016) Pharmaceutical applications of Electrospraying. J Pharm Sci 105:2601–2620. CrossRefPubMedGoogle Scholar
  83. 83.
    Nikmaram N, Roohinejad S, Hashemi S et al (2017) Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. RSC Adv 7:28951–28964. CrossRefGoogle Scholar
  84. 84.
    Odenwälder PK, Irvine S, McEwan JR, Jayasinghe SN (2007) Bio-electrosprays: a novel electrified jetting methodology for the safe handling and deployment of primary living organisms. Biotechnol J 2:622–630. CrossRefPubMedGoogle Scholar
  85. 85.
    Oftadeh MO, Bakhshandeh B, Dehghan MM, Khojasteh A (2018) Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis. J Biomed Mater Res Part A. 106:1200. CrossRefGoogle Scholar
  86. 86.
    Oraby MA, Waley AI, El-Dewany AI et al (2013) Electrospinning of gelatin functionalized with silver Nanoparticles for nanofiber fabrication. Model Numer Simul Mater Sci 3:95–105. CrossRefGoogle Scholar
  87. 87.
    Ott HC, Rajab TK (2016) Tissue-derived matrices. In: In Situ Tissue Regeneration. Elsevier, Amsterdam, pp 229–250Google Scholar
  88. 88.
    Pal P, Dadhich P, Srivas PK et al (2017) Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater Sci 5:1786–1799. CrossRefPubMedGoogle Scholar
  89. 89.
    Qu Y, Wang B, Chu B, et al (2018) Injectable and thermo-sensitive hydrogel and PDLLA electrospun nanofiber membrane composites for guided spinal fusion. ACS Appl Mater Interfaces 10(5):4462–4470 acsami.7b17020. doi:
  90. 90.
    Ramakrishna S, Fujihara K, Teo W-E et al (2005) Electrospinning Process. In: An introduction to electrospinning and nanofibers. World Scientific Publishing Company, Singapore, pp 90–154CrossRefGoogle Scholar
  91. 91.
    Ramphul H, Bhaw-Luximon A, Jhurry D (2017) Sugarcane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydr Polym 178:238–250. CrossRefPubMedGoogle Scholar
  92. 92.
    Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr Polym 113:561–568. CrossRefGoogle Scholar
  93. 93.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. CrossRefGoogle Scholar
  94. 94.
    Romano I, Mele E, Heredia-Guerrero JA et al (2015) Photo-polymerisable electrospun fibres of N-methacrylate glycol chitosan for biomedical applications. RSC Adv 5:24723–24728. CrossRefGoogle Scholar
  95. 95.
    Romo-Uribe A, Meneses-Acosta A, Domínguez-Díaz M (2017) Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds. Mater Sci Eng C 81:236–246. CrossRefGoogle Scholar
  96. 96.
    Rosa AR, Steffens D, Santi B et al (2017) Development of VEGF-loaded PLGA matrices in association with mesenchymal stem cells for tissue engineering. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol 50:e5648. CrossRefGoogle Scholar
  97. 97.
    Sadeghi-Avalshahr A, Nokhasteh S, Molavi AM et al (2017) Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater 4:309–314. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sakuma S, Matsumoto S, Ishizuka N et al (2015) Enhanced boosting of oral absorption of Lopinavir through electrospray coencapsulation with Ritonavir. J Pharm Sci 104:2977–2985. CrossRefPubMedGoogle Scholar
  99. 99.
    Salata O (2005) Tools of nanotechnology: electrospray. Curr Nanosci 1:25–33. CrossRefGoogle Scholar
  100. 100.
    Saul CK, Stori EM, Petzhold CL, et al (2013) Process For producing polymeric structures that have activated surfaces and activated polymeric structures. Amsterdam, Netherlands. Patent number EP2767623A1Google Scholar
  101. 101.
    Seeram Ramakrishna M, Zamani M, Molamma P Prabhakaran S (2013) Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine 8:2997. CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sevivas N, Teixeira FG, Portugal R et al (2017) Mesenchymal Stem Cell Secretome Improves Tendon Cell Viability In Vitro and Tendon-Bone Healing In Vivo When a Tissue Engineering Strategy Is Used in a Rat Model of Chronic Massive Rotator Cuff Tear Am J Sports Med 46:36354651773585. CrossRefGoogle Scholar
  103. 103.
    Shamirzaei Jeshvaghani E, Ghasemi-Mobarakeh L, Mansurnezhad R et al (2017) Fabrication, characterization, and biocompatibility assessment of a novel elastomeric nanofibrous scaffold: a potential scaffold for soft tissue engineering. J Biomed Mater Res Part B Appl Biomater.
  104. 104.
    Sperling LE, Reis KP, Pozzobon LG et al (2017) Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J Biomed Mater Res - Part A 105:1333. CrossRefGoogle Scholar
  105. 105.
    Sperling LE, Reis KP, Pranke P, Wendorff JH (2016) Advantages and challenges offered by biofunctional core-shell fiber systems for tissue engineering and drug delivery. Drug Discov Today 21:1243. CrossRefPubMedGoogle Scholar
  106. 106.
    Sridhar R, Ramakrishna S (2013) Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter 3:e24281. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Steffens D, Mathor MB, Soster PR d L et al (2017) Treatment of a burn animal model with functionalized tridimensional electrospun biomaterials. J Biomater Appl 32:663–676. CrossRefPubMedGoogle Scholar
  108. 108.
    Steffens D, Braghirolli DI, Maurmann N, Pranke P (2018) Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discov Today.
  109. 109.
    Strobel HA, Calamari EL, Beliveau A et al (2018) Fabrication and characterization of electrospun polycaprolactone and gelatin composite cuffs for tissue engineered blood vessels. J Biomed Mater Res Part B Appl Biomater 106:817–826. CrossRefPubMedGoogle Scholar
  110. 110.
    Sun Z, Zussman E, Yarin AL et al (2003) Compound core–shell polymer nanofibers by co-electrospinning. Adv Mater 15:1929–1932. CrossRefGoogle Scholar
  111. 111.
    Suvannasara P, Siralertmukul K, Muangsin N (2014) Electrosprayed 4-carboxybenzenesulfonamide-chitosan microspheres for acetazolamide delivery. Int J Biol Macromol 64:240–246. CrossRefPubMedGoogle Scholar
  112. 112.
    Tan Z, Gao X, Liu T et al (2017) Electrospun vein grafts with high cell infiltration for vascular tissue engineering. Mater Sci Eng C 81:407–415. CrossRefGoogle Scholar
  113. 113.
    Thakkar S, Fernandes H, Moroni L (2015) Decellularized extracellular matrix scaffolds for cartilage regeneration. Methods Mol Biol 1340:133–151CrossRefGoogle Scholar
  114. 114.
    Vatankhah E, Prabhakaran MP, Ramakrishna S (2017) Biomimetic microenvironment complexity to redress the balance between biodegradation and de novo matrix synthesis during early phase of vascular tissue engineering. Mater Sci Eng C 81:39–47. CrossRefGoogle Scholar
  115. 115.
    Venugopal J, Rajeswari R, Shayanti M et al (2012) Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis. J Biomater Sci Polym Ed ahead-of-print:1–15. CrossRefGoogle Scholar
  116. 116.
    Wang Y, Gao R, Wang P-P et al (2012) The differential effects of aligned electrospun PHBHHx fibers on adipogenic and osteogenic potential of MSCs through the regulation of PPARγ signaling. Biomaterials 33:485–493. CrossRefPubMedGoogle Scholar
  117. 117.
    Wang Z-H, Chang Y-Y, Wu J-G et al (2017) Novel 3D neuron regeneration scaffolds based on synthetic polypeptide containing neuron cue. Macromol Biosci 1700251.
  118. 118.
    Wright MEE, Wong AT, Levitt D et al (2018) Influence of ciprofloxacin-based additives on the hydrolysis of nanofiber polyurethane membranes. J Biomed Mater Res Part A 106:1211. CrossRefGoogle Scholar
  119. 119.
    Wu S, Peng H, Li X et al (2017) Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly (L-lactic acid) fibrous meshes. Biofabrication 9:44106. CrossRefGoogle Scholar
  120. 120.
    Wu T, Zhang J, Wang Y et al (2018) Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C 82:121–129. CrossRefGoogle Scholar
  121. 121.
    Xu W, Shen R, Yan Y, Gao J (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater 65:428–438. CrossRefPubMedGoogle Scholar
  122. 122.
    Yan Y, Sencadas V, Jin T et al (2017) Tailoring the wettability and mechanical properties of electrospun poly(l -lactic acid)-poly(glycerol sebacate) core-shell membranes for biomedical applications. J Colloid Interface Sci 508:87–94. CrossRefPubMedGoogle Scholar
  123. 123.
    Yang Y, Li X, Cui W et al (2008) Structural stability and release profiles of proteins from core-shell poly (DL-lactide) ultrafine fibers prepared by emulsion electrospinning. J Biomed Mater Res Part A 86A:374–385. CrossRefGoogle Scholar
  124. 124.
    Yang Y, Yang Q, Zhou F et al (2016) Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth. J Mater Sci Mater Med 27:106. CrossRefPubMedGoogle Scholar
  125. 125.
    Yin A, Luo R, Li J et al (2017a) Coaxial electrospinning multicomponent functional controlled-release vascular graft: optimization of graft properties. Colloids Surfaces B Biointerfaces 152:432–439. CrossRefPubMedGoogle Scholar
  126. 126.
    Yin H, Wang J, Gu Z et al (2017b) Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration. J Biomater Appl 32:331–341. CrossRefPubMedGoogle Scholar
  127. 127.
    Yu D-G, Williams GR, Wang X et al (2011) Polymer-based nanoparticulate solid dispersions prepared by a modified electrospraying process. J Biomed Sci Eng 4:741–749. CrossRefGoogle Scholar
  128. 128.
    Zhang C, Wang X, Zhang E et al (2018) An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomater 66:141–156. CrossRefPubMedGoogle Scholar
  129. 129.
    Zhang L, Huang J, Si T, Xu RX (2012) Coaxial electrospray of microparticles and nanoparticles for biomedical applications. Expert Rev Med Devices 9:595–612. CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Zheng R, Duan H, Xue J et al (2014) The influence of gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 35:152–164. CrossRefPubMedGoogle Scholar
  131. 131.
    Zhou F, Jia X, Yang Y et al (2016) Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater 43:303–313. CrossRefPubMedGoogle Scholar
  132. 132.
    Zhou H, Bhaduri SB (2013) Deposition of PLA/CDHA composite coating via electrospraying. J Biomater Sci Polym Ed 24:784–796. CrossRefPubMedGoogle Scholar
  133. 133.
    Zhou T, Li G, Lin S et al (2017) Electrospun poly(3-hydroxybutyrate- co −4-hydroxybutyrate)/graphene oxide scaffold: enhanced properties and promoted in vivo bone repair in rats. ACS Appl Mater Interfaces 9:42589–42600. CrossRefPubMedGoogle Scholar
  134. 134.
    Zong H, Xia X, Liang Y et al (2017) Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater Sci Eng C.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Natasha Maurmann
    • 1
  • Laura-Elena Sperling
    • 1
  • Patricia Pranke
    • 1
    Email author
  1. 1.Hematology and Stem Cell Laboratory, Faculty of Pharmacy and Post Graduate Program in PhysiologyUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil

Personalised recommendations