Advertisement

3D Bioprinting Technologies for Tissue Engineering Applications

  • Bon Kang Gu
  • Dong Jin Choi
  • Sang Jun Park
  • Young-Jin Kim
  • Chun-Ho KimEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1078)

Abstract

Three-dimensional (3D) printing (rapid prototyping or additive manufacturing) technologies have received significant attention in various fields over the past several decades. Tissue engineering applications of 3D bioprinting, in particular, have attracted the attention of many researchers. 3D scaffolds produced by the 3D bioprinting of biomaterials (bio-inks) enable the regeneration and restoration of various tissues and organs. These 3D bioprinting techniques are useful for fabricating scaffolds for biomedical and regenerative medicine and tissue engineering applications, permitting rapid manufacture with high-precision and control over size, porosity, and shape. In this review, we introduce a variety of tissue engineering applications to create bones, vascular, skin, cartilage, and neural structures using a variety of 3D bioprinting techniques.

Keywords

Bioprinting Scaffold Bio-ink Tissue engineering 

Notes

Acknowledgements

This study was supported by a grant of KIRAMS, funded by Ministry of Science, ICT and Future Planning, South Korea (1711061997/50531-2018) and the Technology Innovation Program (10053595, Development of functionalized hydrogel scaffold based on medical grade biomaterials with 30% or less of molecular weight reduction) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

References

  1. 1.
    Ahn D, Kweon JH, Lee S (2012) Quantification of surface roughness of parts processed by laminated object manufacturing. J Mater Proc Technol 212:339–346.  https://doi.org/10.1016/j.jmatprotec.2011.08.013 CrossRefGoogle Scholar
  2. 2.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408.  https://doi.org/10.1615/CritRevBiomedEng.v40,i5.10 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Andreassi A, Bilenchi R, Biagioli M, D’Aniello C (2005) Classification and pathophysiology of skin grafts. Clin Dermatol 23:332–337.  https://doi.org/10.1016/j.clindermatol.2004.07.024 CrossRefPubMedGoogle Scholar
  4. 4.
    Arkel RV, Amis A (2013) Basics of orthopaedic biomechanics. Orthopaedics and Trauma 27(2):67–75.  https://doi.org/10.1016/J.mporth.2013.01.003 CrossRefGoogle Scholar
  5. 5.
    Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa Y, Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE (2015) Engineered in vitro disease models. Annu Rev Pathol Mech Dis 10:195–262.  https://doi.org/10.1146/annurev-pathol-012414-040418 CrossRefGoogle Scholar
  6. 6.
    Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220.  https://doi.org/10.1038/nature09744 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83:389–405.  https://doi.org/10.1007/s00170-015-7576-2 CrossRefGoogle Scholar
  8. 8.
    Bildziukevich U, Rárová L, Šaman D, Wimmer Z (2018) Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. Eur J Med Chem 145:41–50.  https://doi.org/10.1016/j.ejmech.2017.12.096 CrossRefPubMedGoogle Scholar
  9. 9.
    Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554.  https://doi.org/10.1016/j.tibtech.2012.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504.  https://doi.org/10.1016/j.mattod.2013.11.017 CrossRefGoogle Scholar
  11. 11.
    Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:S467–S479.  https://doi.org/10.1007/s00586-008-0745-3 CrossRefGoogle Scholar
  12. 12.
    Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434.  https://doi.org/10.1128/CMR.19.2.403–434.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4):415–436.  https://doi.org/10.1016/0963-6897(95)00025-S CrossRefGoogle Scholar
  14. 14.
    Corcione CE, Gervaso F, Scalera F, Montagna F, Maiullaro T, Sannino A, Maffezzoli A (2017) 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. J Polym Eng 37(8):741–746.  https://doi.org/10.1515/polyeng-2016-0194 CrossRefGoogle Scholar
  15. 15.
    Cubo N, Garcia M, Cañizo JF, Velasco D, Jorcano JL (2017) 3D biopriting of functional human skin: production and in vivo analysis. Biofabrication 9:015006.  https://doi.org/10.1088/1758-5090/9/1/015006 CrossRefGoogle Scholar
  16. 16.
    Cui X, boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227.  https://doi.org/10.1016/j.biomaterials.2009.07.056 CrossRefPubMedGoogle Scholar
  17. 17.
    Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK (2017) 3D-printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep 7:13412.  https://doi.org/10.1038/s41598-017-13838-7 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS 103(16):6315–6320.  https://doi.org/10.1073/pnas.060175510 CrossRefPubMedGoogle Scholar
  19. 19.
    Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016a) 3-dimensional bioprinting for tissue engineering applications. Biomater. Res. 20:12.  https://doi.org/10.1186/s40824-016-0058-2 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohyd Polym 97:65–73.  https://doi.org/10.1016/j.carbpol.2013.04.060 CrossRefGoogle Scholar
  21. 21.
    Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016b) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5:1429–1438.  https://doi.org/10.1002/adhm.201600095 CrossRefPubMedGoogle Scholar
  22. 22.
    Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156.  https://doi.org/10.1016/j.biomaterials.2014.04.064 CrossRefGoogle Scholar
  23. 23.
    Haring AP, Sontheimer H, Johnson BN (2017) Microphysiological hman brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem Cell Rev Rep 13:381–406.  https://doi.org/10.1007/s12015-017-9738-0 CrossRefGoogle Scholar
  24. 24.
    Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions – a 21st century perspective. Bone Resear 1(3):216–248.  https://doi.org/10.4248/BR201303002 CrossRefGoogle Scholar
  25. 25.
    Holmers LR, Riddick JC (2014) Research summary of an additive manufacturing technology for the fabrication of 3D composites with tailored internal structure. J Minerals, Metals, Materials Society 66(2):270–274.  https://doi.org/10.1007/s11837-013-0828-4 CrossRefGoogle Scholar
  26. 26.
    Hou X, Liu S, Wang M, Wiraja C, Huang W, Chan P, Tan T, Xu C (2017) Layer-by-layer 3D constructs of fibroblasts in hydrogel for examining transdermal penetration capability of nanoparticles. SLAS Technol 22(4):447–453.  https://doi.org/10.1177/2211068216655753 CrossRefPubMedGoogle Scholar
  27. 27.
    Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72.  https://doi.org/10.1111/j.1469-7580.2008.00878.x CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57.  https://doi.org/10.1016/j.biomaterials.2015.08.028 CrossRefPubMedGoogle Scholar
  29. 29.
    Huang TQ, Qu X, Liu J, Chen S (2014) 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices 16:127–132.  https://doi.org/10.1007/s10544-013-9812-6 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hunziker EB (2001) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463.  https://doi.org/10.1053/joca.2002.0801 CrossRefGoogle Scholar
  31. 31.
    Hutmacher DW (2000) Scaffold in tissue engineering bone and cartilage. Biomaterials 21:2529–2543.  https://doi.org/10.1016/B978-008045154-1.50021-6 CrossRefGoogle Scholar
  32. 32.
    Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28:3936–3943.  https://doi.org/10.1016/j.biomaterials.2007.05.01 CrossRefPubMedGoogle Scholar
  33. 33.
    Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatuura T, Minami H (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Onc Rep 33:1837–1843.  https://doi.org/10.3892/or.2015.3767 CrossRefGoogle Scholar
  34. 34.
    Jean J, Garcia-Perez ME, Pouliot R (2011) Bioengineered skin: the self-assembly approach. J Tissue Sci Eng S5:001.  https://doi.org/10.4172/2157-7552.S5-001 CrossRefGoogle Scholar
  35. 35.
    Jia WJ, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68.  https://doi.org/10.1016/j.biomaterials.2016.07.038 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:248–257.  https://doi.org/10.1016/j.stem.2016.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jung JP, Bhuiyan DB, Ogle BM (2016) Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater. Res. 20:27.  https://doi.org/10.1186/s40824-016-0074-2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kato-Negishi M, Morimoto Y, Onoe H, Takeuchi S (2013) Millimeter-sized neural building blocks for 3D heterogeneous neural network assembly. Adv Healthc Mater 2:1564–1570.  https://doi.org/10.1002/adhm.201300052 CrossRefPubMedGoogle Scholar
  39. 39.
    Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A, Wong MZ (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater 25:7406–7417.  https://doi.org/10.1002/adfm.201503423 CrossRefGoogle Scholar
  40. 40.
    Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng. Regen. Med. 13(6):636–646.  https://doi.org/10.1007/s13770-016-0125-8 CrossRefGoogle Scholar
  41. 41.
    Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756.  https://doi.org/10.1111/joa.12257 CrossRefPubMedGoogle Scholar
  42. 42.
    Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogy PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863.  https://doi.org/10.1002/bit.24455 CrossRefGoogle Scholar
  43. 43.
    Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N, Vogt PM, Steinhoff G, Chichkov B (2010) Laser printing of skin cells and human stem cells. Tissue engineering: part C 16(5):847–185.  https://doi.org/10.1089/ten.tec.2009.0397 CrossRefGoogle Scholar
  44. 44.
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130.  https://doi.org/10.1002/adma.201305506 CrossRefPubMedGoogle Scholar
  45. 45.
    Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. ClRP Annals 47(2):525–540.  https://doi.org/10.1016/s0007-8506(7)63240-5 CrossRefGoogle Scholar
  46. 46.
    Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas YP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324.  https://doi.org/10.1158/0008-5472.CAN-04-3921 CrossRefPubMedGoogle Scholar
  47. 47.
    Kundu J, Shim JH, Jang J, Kim SW, Cho DE (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9:1286–1297.  https://doi.org/10.1002/term.1682 CrossRefPubMedGoogle Scholar
  48. 48.
    Land WS II, Zhang B, Ziegert J, Davies A (2015) In-situ metrology system for laser powder bed fusion additive process. Procedia Manuf 1:393–403.  https://doi.org/10.1016/j.promfg.2015.09.047 CrossRefGoogle Scholar
  49. 49.
    Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170.  https://doi.org/10.1098/rsif.2010.0223 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2014b) Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering: part C. 20(6):473–484.  https://doi.org/10.1089/ten.tec.2013.0335 CrossRefGoogle Scholar
  51. 51.
    Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G (2014a) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7(3):460–472.  https://doi.org/10.1007/s12195-014-0340-0 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lee YB, Polio S, Lee W, Dai G, Menon L (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223:645–652.  https://doi.org/10.1016/j.expneurol.2010.02.014 CrossRefPubMedGoogle Scholar
  53. 53.
    Leong MF, Toh JKC, Du C, Narayanan K, Lu HF, Lim TC, Wan ACA, Ying JY (2013) Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 4:2353.  https://doi.org/10.1038/ncomms3353 CrossRefPubMedGoogle Scholar
  54. 54.
    Loss M, Wedler V, Künzi W, Meuli-Simmen C, Meyer VE (2000) Artifcial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26:644–652CrossRefGoogle Scholar
  55. 55.
    Ma H, Xue L (2015) Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation. Nanotechnology 26:025701.  https://doi.org/10.1088/0957-4484/26/2/025701 CrossRefPubMedGoogle Scholar
  56. 56.
    MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880.  https://doi.org/10.1038/nature05664 CrossRefPubMedGoogle Scholar
  57. 57.
    Melchiorri AJ, Fisher JP (2015) Bioprinting of blood vessels, in Essentials 3D Biofabrication Translation. pp 337–350CrossRefGoogle Scholar
  58. 58.
    Metcalfe AD, Ferguson MWJ (2007) J R Soc Interface 4:413–437.  https://doi.org/10.1098/rsif.2006.0179 CrossRefPubMedGoogle Scholar
  59. 59.
    Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8(3):e57741.  https://doi.org/10.1371/journal.pone.0057741 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mota RCAG, Silva EO, Lima FF, Menezes LR, Thiele ACS (2016) 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Mater Sci App 7:430–452.  https://doi.org/10.4236/msa.2016.78039 CrossRefGoogle Scholar
  61. 61.
    Mravic M, Péault B, James AW (2014) Current trends in bone tissue engineering. BioMed Resear Inter 865270:1.  https://doi.org/10.1155/2014/865270 CrossRefGoogle Scholar
  62. 62.
    Ng WL, Wang S, Yeoung WY, Naing MW (2016) Skin bioprinting: impending reality or fantasy? Trends in Biotechnol 34(9):689–699.  https://doi.org/10.1016/j.tibtech.2016.04.006 CrossRefGoogle Scholar
  63. 63.
    Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917.  https://doi.org/10.1016/j.biomaterials.2009.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14(3):88–95.  https://doi.org/10.1016/S1369-7021(11)70058-X CrossRefGoogle Scholar
  65. 65.
    Oh SH, Kang SG, Kim ES, Cho SH, Lee JH (2003) Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24:4011–4021.  https://doi.org/10.1016/S0142-9612(03)00284-9 CrossRefPubMedGoogle Scholar
  66. 66.
    Owens CM, Marga F, Forgacs G, Heesch CM (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5:045007.  https://doi.org/10.1088/1758-5082/5/4/045007 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends in Biotechnol. 33(7):395–400.  https://doi.org/10.1016/j.tibtech.2015.04.005 CrossRefGoogle Scholar
  68. 68.
    Palanisamy N, Ateeq B, Sundaram SK, Pflueger D, Ramnarayanan K, Shankar S, Han B, Cao Q, Cao X, Suleman K, Sinha CK, Dhanasekaran SM, Chen YB, Esgueva R, Banerjee S, LaFargue CJ, Siddiqui J, Demichelis F, Moeller P, BismarTA KR, Fullen DR, Johnson TM, Greenson JK, Giordano TJ, Tan P, Tomlins SA, Varambally S, Rubin MA, Maher CA, Chinnaiyan AM (2010) Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16(7):793–798.  https://doi.org/10.1038/nm.2166 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pimentel CR, Ko SK, Caniglia C, Wolff A, Emnéus J, Keller SS, Dufva M (2017) Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater 65:174–184.  https://doi.org/10.1016/j.actbio.2017.10.047 CrossRefGoogle Scholar
  70. 70.
    Quan Z, Wu A, Keefe M, Qin X, Yu J, Suhr J, Byun JH, Kim BS, Chou TW (2015) Additive manufacturing of multi-directional performs for composites: opportunities and challenges. Mater Today 18(9):503–512.  https://doi.org/10.1016/j.mattod.2015.05.001 CrossRefGoogle Scholar
  71. 71.
    Rath SN, Strobel LA, Arkudas A, Beier JP, Maier AK, Greil P, Horch RE, Kneser U (2012) Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med 16(10):2350–2361.  https://doi.org/10.1111/j.1582-4934.2012.01545.x CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ren X, Wang F, Chen C, Gong X, Yin L, Yang L (2016) Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 17:301.  https://doi.org/10.1186/s12891-016-1130-8 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rengier F, Mehndiratta A, Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J CARS 5:335–341.  https://doi.org/10.1007/s11548-010-0476-x CrossRefGoogle Scholar
  74. 74.
    Richards D, Jia J, Yost M, Markwald R, Mei Y (2016) 3D bioprinting for vascularized tissue fabrication. Annals Biomed Engin 45(1):132–147.  https://doi.org/10.1007/s10439-016-1653-z CrossRefGoogle Scholar
  75. 75.
    Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27.  https://doi.org/10.1002/mabi.200900107 CrossRefPubMedGoogle Scholar
  76. 76.
    Sheridan R (2009) Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin Plastic Surg 36:643–651.  https://doi.org/10.1016/j.cps.2009.05.010 CrossRefGoogle Scholar
  77. 77.
    Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258.  https://doi.org/10.1098/rsif.2009.0403 CrossRefPubMedGoogle Scholar
  78. 78.
    Shin M, Yoshimoto H, Vacanti JP (2004) In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 10(1/2):33–41.  https://doi.org/10.1089/107632704322791673 CrossRefPubMedGoogle Scholar
  79. 79.
    Shivalkar S, Singh S (2017) Solid freeform techniques application in bone tissue engineering for scaffold fabrication. Tissue Eng Regen Med 14(3):187–200.  https://doi.org/10.1007/s13770-016-0002-5 CrossRefGoogle Scholar
  80. 80.
    Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746.  https://doi.org/10.1056/NEJM199909023411006 CrossRefGoogle Scholar
  81. 81.
    Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3:034112.  https://doi.org/10.1088/1758-5082/3/3/034112 CrossRefPubMedGoogle Scholar
  82. 82.
    Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25.  https://doi.org/10.1016/S1369-7021(08)70086-5 CrossRefGoogle Scholar
  83. 83.
    Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, Hopkins AM, Omenetto FG, Haydon PG, Kaplan DL (2014) Bioengineered functional brain-like cortical tissue. PNAS 111(38):13811–13816.  https://doi.org/10.1073/pnas.1324214111 CrossRefPubMedGoogle Scholar
  84. 84.
    Tian XF, Heng BC, Ge Z, Lu K, Rufaihah AJ, Fan VTW, Yeo JF, Cao T (2008) Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems. Scandinavian J Clin Lab Inves 68(1):58–67.  https://doi.org/10.1080/00365510701466416 CrossRefGoogle Scholar
  85. 85.
    Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J (2008) IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26:2713–2723.  https://doi.org/10.1634/stemcells.2008-0031 CrossRefPubMedGoogle Scholar
  86. 86.
    Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204.  https://doi.org/10.1108/RPJ-01-2013-0012 CrossRefGoogle Scholar
  87. 87.
    Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18:789.  https://doi.org/10.3390/ijms18040789 CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wang F, Tang J, Li P, Si S, Yu H, Yang X, Tao J, Lv Q, Gu M, Yang H, Wang Z (2018) Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. Cell Physiol Biochem 45:54–66.  https://doi.org/10.1159/000486222 CrossRefPubMedGoogle Scholar
  89. 89.
    Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S (2016) 3D bioprinting technologies for hard tissue and organ engineering. Materials 9:802.  https://doi.org/10.3390/ma9100802 CrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wang X, Tolba E, Schröder HC, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG (2014) Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One 9(11):e11497.  https://doi.org/10.1371/journal.pone.0112497. CrossRefGoogle Scholar
  91. 91.
    Wong KV, Hernandez A (2012) A review of additive manufacturing. Inter Scholar Resear Net 208760:1.  https://doi.org/10.5402/2012/208760 CrossRefGoogle Scholar
  92. 92.
    Wu H, Lei P, Liu G, Zhang YS, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C (2017a) Reconstruction of large-scale defects with a novel hybrid scaffold made from poly(L-lactic acid)/nanohydroxyapatite/alendronate-loaded chitosan microsphere: in vitro and in vivo studies. Sci Rep 7:359.  https://doi.org/10.1038/s41598-017-00506-z CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wu T, Yu S, Chen D, Wang Y (2017b) Bionic design, materials and performance of bone tissue scaffolds. Materials 10:1187.  https://doi.org/10.3390/ma10101187 CrossRefPubMedCentralGoogle Scholar
  94. 94.
    Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183.  https://doi.org/10.1002/adma.201004625 CrossRefPubMedGoogle Scholar
  95. 95.
    Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588.  https://doi.org/10.1016/j.biomaterials.2006.01.048 CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang D, Pekkanen-Mattila M, Shahsavani M, Falk A, Teixeira AI, Herland A (2014b) A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35:1420–1428.  https://doi.org/10.1016/j.biomaterials.2013.11.028 CrossRefPubMedGoogle Scholar
  97. 97.
    Zhang XD, Chen J, Min Y, Park GB, Shen X, Song SS, Sun YM, Wang H, Long W, Xie J, Gao K, Zhang L, Fan S, Fan F, Jeong U (2014a) Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv Funct Mater 24:1718–1729.  https://doi.org/10.1002/adfm.201302312 CrossRefGoogle Scholar
  98. 98.
    Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S, Sun W (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001.  https://doi.org/10.1088/1758-5082/6/3/035001 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bon Kang Gu
    • 1
  • Dong Jin Choi
    • 1
  • Sang Jun Park
    • 1
  • Young-Jin Kim
    • 2
  • Chun-Ho Kim
    • 1
    Email author
  1. 1.Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical SciencesSeoulSouth Korea
  2. 2.Department of Biomedical EngineeringCatholic University of DaeguGyeongsanSouth Korea

Personalised recommendations