Advertisement

Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine

  • Pau Atienza-Roca
  • Xiaolin Cui
  • Gary J. Hooper
  • Tim B. F. Woodfield
  • Khoon S. LimEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1078)

Abstract

Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.

Keywords

Growth factor delivery Tissue engineering Delivery vehicles Scaffolds Biomaterials 

References

  1. 1.
    Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Aniruddha Deshpande SBK, Bhongade ML (2014) A comparative evaluation of rhPDGF-BB + β-TCP and subepithelial connective tissue graft for the treatment of multiple gingival recession defects in humans. Periodontics Restor Dent 34(2):241–249CrossRefGoogle Scholar
  3. 3.
    Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–3082CrossRefGoogle Scholar
  4. 4.
    Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279(13):12346–12354PubMedCrossRefGoogle Scholar
  5. 5.
    Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS, Tjarks W, Barth RF, Claffey K, Backer JM (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4(9):1423–1429PubMedCrossRefGoogle Scholar
  6. 6.
    Bao P, Kodra A, Tomic-Canic M, Golinko MS, Ehrlich HP, Brem H (2009) The role of vascular endothelial growth factor in wound healing. J Surg Res 153(2):347–358PubMedCrossRefGoogle Scholar
  7. 7.
    Barati D, Shariati SRP, Moeinzadeh S, Melero-Martin JM, Khademhosseini A, Jabbari E (2016) Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel. J Control Release 223:126–136PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Barnard JA, Daniel Beauchamp R, Russell WE, Dubois RN, Coffey RJ (1995) Epidermal growth factor-related peptides and their relevance to gastrointestinal pathophysiology. Gastroenterology 108(2):564–580PubMedCrossRefGoogle Scholar
  9. 9.
    Bayer EA, Gottardi R, Fedorchak MV, Little SR (2015) The scope and sequence of growth factor delivery for vascularized bone tissue regeneration. J Control Release 219:129–140PubMedCrossRefGoogle Scholar
  10. 10.
    Béduneau A, Saulnier P, Benoit J-P (2007) Active targeting of brain tumors using nanocarriers. Biomaterials 28(33):4947–4967PubMedCrossRefGoogle Scholar
  11. 11.
    Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Berlanga-Acosta J, Fernandez-Montequin J, Valdes-Perez C, Savigne-Gutierrez W, Mendoza-Mari Y, Garcia-Ojalvo A, Falcon-Cama V, Garcia Del Barco-Herrera D, Fernandez-Mayola M, Perez-Saad H, Pimentel-Vazquez E, Urquiza-Rodriguez A, Kulikovsky M, Guillen-Nieto G (2017) Diabetic foot ulcers and epidermal growth factor: revisiting the local delivery route for a successful outcome. Biomed Res Int 2017:2923759PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Betz OB, Betz VM, Nazarian A, Egermann M, Gerstenfeld LC, Einhorn TA, Vrahas MS, Bouxsein ML, Evans CH (2007) Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther 14:1039PubMedCrossRefGoogle Scholar
  14. 14.
    Bhattacharyya S, Wang H, Ducheyne P (2012) Polymer-coated mesoporous silica nanoparticles for the controlled release of macromolecules. Acta Biomater 8(9):3429–3435PubMedCrossRefGoogle Scholar
  15. 15.
    Bier E, De Robertis EM (2015) Embryo development. BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science 348(6242):aaa5838PubMedCrossRefGoogle Scholar
  16. 16.
    Bing M, Da-Sheng C, Zhao-Fan X, Dao-Feng B, Wei L, Zhi-Fang C, Qiang W, Jia H, Jia-Ke C, Chuan-An S, Yong-Hua S, Guo-An Z, Xiao-Hua H (2007) Randomized, multicenter, double-blind, and placebo-controlled trial using topical recombinant human acidic fibroblast growth factor for deep partial-thickness burns and skin graft donor site. Wound Repair Regen 15(6):795–799CrossRefGoogle Scholar
  17. 17.
    Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C (2007) Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 59(6):454–477PubMedCrossRefGoogle Scholar
  18. 18.
    Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8(4):1401–1421PubMedCrossRefGoogle Scholar
  19. 19.
    Brekken RA, Sage EH (2001) SPARC, a matricellular protein: at the crossroads of cell–matrix communication: [Matrix Biology (2000) 569–580]. Matrix Biol 19(8):815–827CrossRefGoogle Scholar
  20. 20.
    Burdick JA, Ward M, Liang E, Young MJ, Langer R (2006) Stimulation of neurite outgrowth by neurotrophins delivered from degradable hydrogels. Biomaterials 27(3):452–459PubMedCrossRefGoogle Scholar
  21. 21.
    Byambaa B, Annabi N, Yue K, Trujillo-de Santiago G, Alvarez MM, Jia W, Kazemzadeh-Narbat M, Shin SR, Tamayol A, Khademhosseini A (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015-n/aCrossRefGoogle Scholar
  22. 22.
    Caplan AI, Correa D (2011) PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res 29(12):1795–1803PubMedCrossRefGoogle Scholar
  23. 23.
    Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491PubMedCrossRefGoogle Scholar
  24. 24.
    Chan SY, Wong RW (2000) Expression of epidermal growth factor in transgenic mice causes growth retardation. J Biol Chem 275(49):38693–38698PubMedCrossRefGoogle Scholar
  25. 25.
    Chan SJ, Love C, Spector M, Cool SM, Nurcombe V, Lo EH (2017) Endogenous regeneration: engineering growth factors for stroke. Neurochem Int 107:57–65PubMedCrossRefGoogle Scholar
  26. 26.
    Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ (2008) Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small 4(10):1769–1777PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chatzinikolaidou M, Laub M, Rumpf H, Jennissen HP (2002) Biocoating of electropolished and ultra-hydrophilic titanium and cobalt chromium molybdenum alloy surfaces with proteins. Mater Werkst 33(12):720–727CrossRefGoogle Scholar
  28. 28.
    Chen W, Palazzo A, Hennink WE, Kok RJ (2017) Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol Pharm 14(2):459–467PubMedCrossRefGoogle Scholar
  29. 29.
    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21(21):2155–2161PubMedCrossRefGoogle Scholar
  30. 30.
    Chiu LLY, Weisel RD, Li R-K, Radisic M (2011) Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J Tissue Eng Regen Med 5(1):69–84PubMedCrossRefGoogle Scholar
  31. 31.
    Chung Y-I, Tae G, Hong Yuk S (2006) A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors. Biomaterials 27(12):2621–2626PubMedCrossRefGoogle Scholar
  32. 32.
    Cochran DL, Oh TJ, Mills MP, Clem DS, McClain PK, Schallhorn RA, McGuire MK, Scheyer ET, Giannobile WV, Reddy MS, Abou-Arraj RV, Vassilopoulos PJ, Genco RJ, Geurs NC, Takemura A (2016) A randomized clinical trial evaluating rh-FGF-2/β-TCP in periodontal defects. J Dent Res 95(5):523–530PubMedCrossRefGoogle Scholar
  33. 33.
    Cohen S (2008) Origins of growth factors: NGF and EGF. J Biol Chem 283(49):33793–33797PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cohen S, Levi-Montalcini R (1957) Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res 17(1):15–20PubMedGoogle Scholar
  35. 35.
    Copland MJ, Rades T, Davies NM, Baird MA (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97PubMedCrossRefGoogle Scholar
  36. 36.
    Cornock R, Beirne S, Thompson B, Wallace GG (2014) Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering. Biofabrication 6(2):025002PubMedCrossRefGoogle Scholar
  37. 37.
    Dai C, Guo H, Lu J, Shi J, Wei J, Liu C (2011) Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based μCT. Biomaterials 32(33):8506–8517PubMedCrossRefGoogle Scholar
  38. 38.
    Davoodi P, Ng WC, Yan WC, Srinivasan MP, Wang C-H (2016) Double-walled microparticles-embedded self-cross-linked, injectable, and antibacterial hydrogel for controlled and sustained release of chemotherapeutic agents. ACS Appl Mater Interfaces 8(35):22785–22800PubMedCrossRefGoogle Scholar
  39. 39.
    De Biase P, Capanna R (2005) Clinical applications of BMPs. Injury 36(Suppl 3):S43–S46PubMedCrossRefGoogle Scholar
  40. 40.
    de Boer WI, Schuller AG, Vermey M, van der Kwast TH (1994) Expression of growth factors and receptors during specific phases in regenerating urothelium after acute injury in vivo. Am J Pathol 145(5):1199–1207PubMedPubMedCentralGoogle Scholar
  41. 41.
    De Laporte L, Rice JJ, Tortelli F, Hubbell JA (2013) Tenascin C promiscuously binds growth factors via its sifth fibronectin type III-like domain. PLOS One 8(4):e62076PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Dee KC, Puleo DA, Bizios R (2003) Biomaterials. An introduction to tissue-biomaterial interactions. Wiley, Hoboken, pp 1–13CrossRefGoogle Scholar
  43. 43.
    Dong X, Wang Q, Wu T, Pan H (2007) Understanding adsorption-desorption dynamics of BMP-2 on hydroxyapatite (001) surface. Biophys J 93(3):750–759PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Duggirala SS, Mehta RC, Deluca PP (1996) Interaction of recombinant human bone morphogenetic protein-2 with poly (d,l Lactide-co-glycolide) microspheres. Pharm Dev Technol 1(1):11–19PubMedCrossRefGoogle Scholar
  45. 45.
    Ehlert N, Hoffmann A, Luessenhop T, Gross G, Mueller PP, Stieve M, Lenarz T, Behrens P (2011) Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomater 7(4):1772–1779PubMedCrossRefGoogle Scholar
  46. 46.
    Ehrbar M, Metters A, Zammaretti P, Hubbell JA, Zisch AH (2005) Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release 101(1):93–109PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    El Agha E, Kosanovic D, Schermuly RT, Bellusci S (2016) Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 53:76–84PubMedCrossRefGoogle Scholar
  48. 48.
    Eley JG, Mathew P (2007) Preparation and release characteristics of insulin and insulin-like growth factor-one from polymer nanoparticles. J Microencapsul 24(3):225–234PubMedCrossRefGoogle Scholar
  49. 49.
    Ennett AB, Kaigler D, Mooney DJ (2006) Temporally regulated delivery of VEGF in vitro and in vivo. J Biomed Mater Res Part A 79A(1):176–184CrossRefGoogle Scholar
  50. 50.
    Eyjolfsdottir H, Eriksdotter M, Linderoth B, Lind G, Juliusson B, Kusk P, Almkvist O, Andreasen N, Blennow K, Ferreira D, Westman E, Nennesmo I, Karami A, Darreh-Shori T, Kadir A, Nordberg A, Sundström E, Wahlund L-O, Wall A, Wiberg M, Winblad B, Seiger Å, Wahlberg L, Almqvist P (2016) Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimer’s Res Ther 8(1):30CrossRefGoogle Scholar
  51. 51.
    Faustino C, Rijo P, Reis CP (2017) Nanotechnological strategies for nerve growth factor delivery: therapeutic implications in Alzheimer’s disease. Pharmacol Res 120:68–87PubMedCrossRefGoogle Scholar
  52. 52.
    Fernández-Montequín JI, Betancourt BY, Leyva-Gonzalez G, Mola EL, Galán-Naranjo K, Ramírez-Navas M, Bermúdez-Rojas S, Rosales F, García-Iglesias E, Berlanga-Acosta J, Silva-Rodriguez R, Garcia-Siverio M, Martinez LH (2009) Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: treatment up to complete wound closure. Int Wound J 6(1):67–72PubMedCrossRefGoogle Scholar
  53. 53.
    Food and Drug Adinistration (2008) Safety warning on becaplermin in regranex, pp 1–10Google Scholar
  54. 54.
    Frangogiannis NG (2017) The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 127(5):1600–1612PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fu YC, Nie H, Ho ML, Wang CK, Wang CH (2008) Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2. Biotechnol Bioeng 99(4):996–1006PubMedCrossRefGoogle Scholar
  56. 56.
    Funakoshi H, Nakamura T (2003) Hepatocyte growth factor: from diagnosis to clinical applications. Clin Chim Acta 327(1):1–23PubMedCrossRefGoogle Scholar
  57. 57.
    García JR, Clark AY, García AJ (2016) Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res Part A 104(4):889–900CrossRefGoogle Scholar
  58. 58.
    Gary EF, Sheldon L, Luis AS, Leo BS, Samuel EL (2013) The role of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in orthopaedic bone repair and regeneration. Curr Pharm Des 19(19):3384–3390CrossRefGoogle Scholar
  59. 59.
    Ge Zhang YN, Wang X, Qingsong H, Suggs LJ, Zhang J (2007) Controlled release of stromal cell–derived factor-1alpha in situ increases C-kit+ Cell homing to the infarcted heart. Tissue Eng 13(8):2063–2071PubMedCrossRefGoogle Scholar
  60. 60.
    Gessner A, Lieske A, Paulke BR, Müller RH (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170PubMedCrossRefGoogle Scholar
  61. 61.
    Gessner A, Lieske A, Paulke B-R, Müller RH (2003) Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J Biomed Mater Res Part A 65A(3):319–326CrossRefGoogle Scholar
  62. 62.
    Gou ML, Huang MJ, Gou ML, Huang MJ, Qian ZY, Gou ML, Huang MJ, Qian ZY, Yang L, Gou ML, Huang MJ, Qian ZY, Yang L, Dai M, Li XY, Wang K, Wen YJ, Li J, Zhao X, Wei YQ (2007) Preparation of anionic poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) copolymeric nanoparticles as basic protein antigen carrier. Growth Factors 25(3):202–208CrossRefGoogle Scholar
  63. 63.
    Gou M, Dai M, Gu Y, Li X, Wen Y, Yang L, Wang K, Wei Y, Qian Z (2008) Basic fibroblast growth factor loaded biodegradable PCL-PEG-PCL copolymeric nanoparticles: preparation, in vitro release and immunogenicity study. J Nanosci Nanotechnol 8(5):2357–2361PubMedCrossRefGoogle Scholar
  64. 64.
    Grefte S, Kuijpers-Jagtman AM, Torensma R, Hoff JWV (2010) Skeletal muscle fibrosis: the effect of stromal-derived factor-1α-loaded collagen scaffolds. Regen Med 5(5):737–747PubMedCrossRefGoogle Scholar
  65. 65.
    Guicheux J, Gauthier O, Aguado E, Pilet P, Couillaud S, Jegou D, Daculsi G, Heymann D (1998) Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study. J Bone Miner Res 13(4):739–748PubMedCrossRefGoogle Scholar
  66. 66.
    Han Q, Sun W, Lin H, Zhao W, Gao Y, Zhao Y, Chen B, Xiao Z, Hu W, Li Y, Yang B, Dai J (2009) Linear ordered collagen scaffolds loaded with collagen-binding brain-derived neurotrophic factor improve the recovery of spinal cord injury in rats. Tissue Eng Part A 15(10):2927–2935PubMedCrossRefGoogle Scholar
  67. 67.
    Hanft JR, Pollak RA, Barbul A, van Gils C, Kwon PS, Gray SM, Lynch CJ, Semba CP, Breen TJ (2008) Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J Wound Care 17(1):30–37PubMedCrossRefGoogle Scholar
  68. 68.
    Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M (1998) Circulating concentrations of insulin-like growth factor I and risk of breast cancer. Lancet 351(9113):1393–1396PubMedCrossRefGoogle Scholar
  69. 69.
    Hanzhe Z, Tatsushi K, Takeshi H, Kanji T, Kentaro D, Violeta L, Atsushi T, Toru Y, Satoshi H, Yoshio I, Akiyoshi O, Koji A (2008) Gelatin-siloxane hybrid scaffolds with vascular endothelial growth factor induces brain tissue regeneration. Curr Neurovasc Res 5(2):112–117CrossRefGoogle Scholar
  70. 70.
    Hirose J, Kawashima H, Yoshie O, Tashiro K, Miyasaka M (2001) Versican interacts with chemokines and modulates cellular responses. J Biol Chem 276(7):5228–5234PubMedCrossRefGoogle Scholar
  71. 71.
    Holland TA, Tabata Y, Mikos AG (2003) In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 91(3):299–313PubMedCrossRefGoogle Scholar
  72. 72.
    Holland TA, Tabata Y, Mikos AG (2005) Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J Control Release 101(1):111–125PubMedCrossRefGoogle Scholar
  73. 73.
    Holland TA, Bodde EWH, Cuijpers VMJI, Baggett LS, Tabata Y, Mikos AG, Jansen JA (2007) Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthr Cartil 15(2):187–197PubMedCrossRefGoogle Scholar
  74. 74.
    Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regı M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 68(1):105–109CrossRefGoogle Scholar
  75. 75.
    Hu K, Olsen BR (2016) The roles of vascular endothelial growth factor in bone repair and regeneration. Bone 91:30–38PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hua N, Sun J (2008) Body distribution of poly(d,l-lactide-co-glycolide) copolymer degradation products in rats. J Mater Sci, Mater Med 19(10):3243–3248CrossRefGoogle Scholar
  77. 77.
    Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73(2):121–136PubMedCrossRefGoogle Scholar
  78. 78.
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hyzy SL, Olivares-Navarrete R, Schwartz Z, Boyan BD (2012) BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner. J Cell Biochem 113(10):3236–3245PubMedCrossRefGoogle Scholar
  80. 80.
    Ito Y (2008) Covalently immobilized biosignal molecule materials for tissue engineering. Soft Matter 4(1):46–56CrossRefGoogle Scholar
  81. 81.
    Itoh N, Ornitz DM (2011) Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 149(2):121–130CrossRefGoogle Scholar
  82. 82.
    Jansen RG, Van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von den Hoff JW (2009) FGF-2-loaded collagen scaffolds attract cells and blood vessels in rat oral mucosa. J Oral Pathol Med 38(8):630–638PubMedCrossRefGoogle Scholar
  83. 83.
    Jau-Ching W, Huang W-C, Chen Y-C, Tsung-Hsi T, Tsai Y-A, Huang S-F, Huang H-C, Cheng H (2011) Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. J Neurosurg, Spine 15(3):216–227CrossRefGoogle Scholar
  84. 84.
    Jayakumar A, Rajababu P, Rohini S, Butchibabu K, Naveen A, Reddy PK, Vidyasagar S, Satyanarayana D, Pavan Kumar S (2011) Multi-centre, randomized clinical trial on the efficacy and safety of recombinant human platelet-derived growth factor with β-tricalcium phosphate in human intra-osseous periodontal defects. J Clin Periodontol 38(2):163–172PubMedCrossRefGoogle Scholar
  85. 85.
    Jeon O, Song SJ, Yang HS, Bhang SH, Kang SW, Sung MA, Lee JH, Kim BS (2008) Long-term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short-term delivery. Biochem Biophys Res Commun 369(2):774–780PubMedCrossRefGoogle Scholar
  86. 86.
    Kanczler JM, Ginty PJ, White L, Clarke NMP, Howdle SM, Shakesheff KM, Oreffo ROC (2010) The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials 31(6):1242–1250PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kawaguchi H, Jingushi S, Izumi T, Fukunaga M, Matsushita T, Nakamura T, Mizuno K, Nakamura T, Nakamura K (2007) Local application of recombinant human fibroblast growth factor-2 on bone repair: a dose–escalation prospective trial on patients with osteotomy. J Orthop Res 25(4):480–487PubMedCrossRefGoogle Scholar
  88. 88.
    Kempen DH, Lu L, Hefferan TE, Creemers LB, Maran A, Classic KL, Dhert WJ, Yaszemski MJ (2008) Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering. Biomaterials 29(22):3245–3252PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kempen DHR, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A, Yaszemski MJ, Dhert WJA (2009) Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30(14):2816–2825PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kenney NJ, Bowman A, Korach KS, Carl Barrett J, Salomon DS (2003) Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse. Breast Cancer Res Treat 79(2):161–173PubMedCrossRefGoogle Scholar
  91. 91.
    Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, Wenke JC, Yang Y (2012) Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater 8(5):1768–1777PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kim HKW, Oxendine I, Kamiya N (2013) High-concentration of BMP2 reduces cell proliferation and increases apoptosis via DKK1 and SOST in human primary periosteal cells. Bone 54(1):141–150PubMedCrossRefGoogle Scholar
  93. 93.
    Kimura Y, Hokugo A, Takamoto T, Tabata Y, Kurosawa H (2008) Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng Part C, Methods 14(1):47–57CrossRefGoogle Scholar
  94. 94.
    King WJ, Krebsbach PH (2012) Growth factor delivery: how surface interactions modulate release in vitro and in vivo. Adv Drug Deliv Rev 64(12):1239–1256PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kishimoto Y, Hirano S, Kitani Y, Suehiro A, Umeda H, Tateya I, Kanemaru S-i, Tabata Y, Ito J (2010) Chronic vocal fold scar restoration with hepatocyte growth factor hydrogel. Laryngoscope 120(1):108–113PubMedGoogle Scholar
  96. 96.
    Kitamura M, Akamatsu M, Machigashira M, Hara Y, Sakagami R, Hirofuji T, Hamachi T, Maeda K, Yokota M, Kido J, Nagata T, Kurihara H, Takashiba S, Sibutani T, Fukuda M, Noguchi T, Yamazaki K, Yoshie H, Ioroi K, Arai T, Nakagawa T, Ito K, Oda S, Izumi Y, Ogata Y, Yamada S, Shimauchi H, Kunimatsu K, Kawanami M, Fujii T, Furuichi Y, Furuuchi T, Sasano T, Imai E, Omae M, Yamada S, Watanuki M, Murakami S (2011) FGF-2 stimulates periodontal regeneration: results of a multi-center randomized clinical trial. J Dent Res 90(1):35–40PubMedCrossRefGoogle Scholar
  97. 97.
    Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Koch FP, Becker J, Terheyden H, Capsius B, Wagner W, On behalf of the Research Group of this Multicenter Clinical Trial (2010) A prospective, randomized pilot study on the safety and efficacy of recombinant human growth and differentiation factor-5 coated onto β-tricalcium phosphate for sinus lift augmentation. Clin Oral Implants Res 21(11):1301–1308PubMedCrossRefGoogle Scholar
  99. 99.
    Koempel JA, Patt BS, O’Grady K, Wozney J, Toriumi DM (1998) The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone. J Biomed Mater Res 41(3):359–363PubMedCrossRefGoogle Scholar
  100. 100.
    Koria P (2012) Delivery of growth factors for tissue regeneration and wound healing. BioDrugs 26(3):163–175PubMedCrossRefGoogle Scholar
  101. 101.
    Kumagai M, Marui A, Tabata Y, Takeda T, Yamamoto M, Yonezawa A, Tanaka S, Yanagi S, Ito-Ihara T, Ikeda T, Murayama T, Teramukai S, Katsura T, Matsubara K, Kawakami K, Yokode M, Shimizu A, Sakata R (2016) Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia. Heart Vessel 31(5):713–721CrossRefGoogle Scholar
  102. 102.
    Kuo YC, Chou PR (2014) Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci 103(8):2484–2497PubMedCrossRefGoogle Scholar
  103. 103.
    Kuo Y-C, Rajesh R (2017) Nerve growth factor-loaded heparinized cationic solid lipid nanoparticles for regulating membrane charge of induced pluripotent stem cells during differentiation. Mater Sci Eng: C 77:680–689CrossRefGoogle Scholar
  104. 104.
    Kurakhmaeva KB, Voronina TA, Kapica IG, Kreuter J, Nerobkova LN, Seredenin SB, Balabanian VY, Alyautdin RN (2008) Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80. Bull Exp Biol Med 145(2):259–262PubMedCrossRefGoogle Scholar
  105. 105.
    Lanza RP, Langer RS, Vacanti J (2007) Principles of tissue engineering. Elsevier Academic Press, AmsterdamGoogle Scholar
  106. 106.
    Lau TT, Wang DA (2011) Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine. Expert Opin Biol Ther 11(2):189–197PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lauzon M-A, Daviau A, Marcos B, Faucheux N (2015) Nanoparticle-mediated growth factor delivery systems: a new way to treat Alzheimer’s disease. J Controll Release 206(Supplement C):187–205CrossRefGoogle Scholar
  108. 108.
    Lee S-H, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4):339–359PubMedCrossRefGoogle Scholar
  109. 109.
    Lee P-Y, Li Z, Huang L (2003) Thermosensitive hydrogel as a Tgf-β1 gene delivery vehicle enhances diabetic wound healing. Pharm Res 20(12):1995–2000PubMedCrossRefGoogle Scholar
  110. 110.
    Lee J-Y, Kim K-H, Shin S-Y, Rhyu I-C, Lee Y-M, Park Y-J, Chung C-P, Lee S-J (2006) Enhanced bone formation by transforming growth factor-β1-releasing collagen/chitosan microgranules. J Biomed Mater Res Part A 76A(3):530–539CrossRefGoogle Scholar
  111. 111.
    Lee JS, Go DH, Bae JW, Lee SJ, Park KD (2007) Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor. J Control Release, Off J Control Release Soc 117(2):204–209CrossRefGoogle Scholar
  112. 112.
    Lee JS, Bae JW, Joung YK, Lee SJ, Han DK, Park KD (2008) Controlled dual release of basic fibroblast growth factor and indomethacin from heparin-conjugated polymeric micelle. Int J Pharm 346(1–2):57–63PubMedCrossRefGoogle Scholar
  113. 113.
    Lee F, Chung JE, Kurisawa M (2009) An injectable hyaluronic acid–tyramine hydrogel system for protein delivery. J Control Release 134(3):186–193PubMedCrossRefGoogle Scholar
  114. 114.
    Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8(55):153–170PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Lee HJ, Fernandes-Cunha GM, Putra I, Koh W-G, Myung D (2017) Tethering growth factors to collagen surfaces using copper-free click chemistry: surface characterization and in vitro biological response. ACS Appl Mater Interfaces 9(28):23389–23399PubMedCrossRefGoogle Scholar
  116. 116.
    Leslie-Barbick JE, Shen C, Chen C, West JL (2010) Micron-scale spatially patterned, covalently immobilized vascular endothelial growth factor on hydrogels accelerates endothelial tubulogenesis and increases cellular angiogenic responses. Tissue Eng Part A 17(1–2):221–229PubMedPubMedCentralGoogle Scholar
  117. 117.
    Li B, Davidson JM, Guelcher SA (2009) The effect of the local delivery of platelet-derived growth factor from reactive two-component polyurethane scaffolds on the healing in rat skin excisional wounds. Biomaterials 30(20):3486–3494PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Li F, Yu F, Xu X, Li C, Huang D, Zhou X, Ye L, Zheng L (2017) Evaluation of recombinant human FGF-2 and PDGF-BB in periodontal regeneration: a systematic review and meta-analysis. Sci Rep 7(1):65PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lissenberg-Thunnissen SN, de Gorter DJJ, Sier CFM, Schipper IB (2011) Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop 35(9):1271PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Liu J-J, Wang C-Y, Wang J-G, Ruan H-J, Fan C-Y (2011) Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res Part A 96A(1):13–20CrossRefGoogle Scholar
  121. 121.
    Liu L, Deng D, Xing Y, Li S, Yuan B, Chen J, Xia N (2013) Activity analysis of the carbodiimide-mediated amine coupling reaction on self-assembled monolayers by cyclic voltammetry. Electrochim Acta 89:616–622CrossRefGoogle Scholar
  122. 122.
    Liu Q, Huang Y, Lan Y, Zuo Q, Li C, Zhang Y, Guo R, Xue W (2017) Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS–PVA hydrogel. J Tissue Eng Regen Med 11(5):1562–1573PubMedCrossRefGoogle Scholar
  123. 123.
    Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJJP, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2014) Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35(31):8829–8839PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Maeda H, Wada N, Tomokiyo A, Monnouchi S, Akamine A (2013) Prospective potency of TGF-beta1 on maintenance and regeneration of periodontal tissue. Int Rev Cell Mol Biol 304:283–367PubMedCrossRefGoogle Scholar
  125. 125.
    Marsell R, Einhorn TA (2009) The role of endogenous bone morphogenetic proteins in normal skeletal repair. Injury 40:S4–S7PubMedCrossRefGoogle Scholar
  126. 126.
    Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42(6):551–555PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Martino MM, Hubbell JA (2010) The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J 24(12):4711–4721PubMedCrossRefGoogle Scholar
  128. 128.
    Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Müller R, Livne E, Eming SA, Hubbell JA (2011) Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 3(100):100ra189–100ra189CrossRefGoogle Scholar
  129. 129.
    Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA (2013) Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc Natl Acad Sci 110(12):4563–4568PubMedCrossRefGoogle Scholar
  130. 130.
    Masters KS (2011) Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci 11(9):1149–1163PubMedCrossRefGoogle Scholar
  131. 131.
    Matsuo T, Sugita T, Kubo T, Yasunaga Y, Ochi M, Murakami T (2003) Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res Part A 66A(4):747–754CrossRefGoogle Scholar
  132. 132.
    McGuire MK, Scheyer ET, Schupbach P (2009) Growth factor–mediated treatment of recession defects: a randomized controlled trial and histologic and microcomputed tomography examination. J Periodontol 80(4):550–564PubMedCrossRefGoogle Scholar
  133. 133.
    Miller RE, Grodzinsky AJ, Cummings K, Plaas AHK, Cole AA, Lee RT, Patwari P (2010) Intraarticular injection of heparin-binding insulin-like growth factor 1 sustains delivery of insulin-like growth factor 1 to cartilage through binding to chondroitin sulfate. Arthritis Rheum 62(12):3686–3694PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Mitchell AC, Briquez PS, Hubbell JA, Cochran JR (2016) Engineering growth factors for regenerative medicine applications. Acta Biomater 30:1–12PubMedCrossRefGoogle Scholar
  135. 135.
    Moore NM, Lin NJ, Gallant ND, Becker ML (2010) The use of immobilized osteogenic growth peptide on gradient substrates synthesized via click chemistry to enhance MC3T3-E1 osteoblast proliferation. Biomaterials 31(7):1604–1611PubMedCrossRefGoogle Scholar
  136. 136.
    Morgan AW, Chan LL, Sendemir-Urkmez A, Cunningham BT, Jamison RD (2010) Detection of growth factor binding to gelatin and heparin using a photonic crystal optical biosensor. Mater Sci Eng C 30(5):686–690CrossRefGoogle Scholar
  137. 137.
    Morishita R, Makino H, Aoki M, Hashiya N, Yamasaki K, Azuma J, Taniyama Y, Sawa Y, Kaneda Y, Ogihara T (2011) Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler, Thromb, Vasc Biol 31(3):713–720CrossRefGoogle Scholar
  138. 138.
    Moshfeghi AA, Peyman GA (2005) Micro- and nanoparticulates. Adv Drug Deliv Rev 57(14):2047–2052PubMedCrossRefGoogle Scholar
  139. 139.
    Mulder G, Tallis AJ, Marshall VT, Mozingo D, Phillips L, Pierce GF, Chandler LA, Sosnowski BK (2009) Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a Phase 1/2 trial. Wound Repair Regen 17(6):772–779PubMedCrossRefGoogle Scholar
  140. 140.
    Nevins M, Giannobile WV, McGuire MK, Kao RT, Mellonig JT, Hinrichs JE, McAllister BS, Murphy KS, McClain PK, Nevins ML, Paquette DW, Han TJ, Reddy MS, Lavin PT, Genco RJ, Lynch SE (2005) Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol 76(12):2205–2215PubMedCrossRefGoogle Scholar
  141. 141.
    Nguyen AH, McKinney J, Miller T, Bongiorno T, McDevitt TC (2015) Gelatin methacrylate microspheres for controlled growth factor release. Acta Biomater 13:101–110PubMedCrossRefGoogle Scholar
  142. 142.
    Niebuhr A, Henry T, Goldman J, Baumgartner I, van Belle E, Gerss J, Hirsch AT, Nikol S (2011) Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease. Gene Ther 19:264PubMedCrossRefGoogle Scholar
  143. 143.
    Nof M, Shea LD (2002) Drug-releasing scaffolds fabricated from drug-loaded microspheres. J Biomed Mater Res 59(2):349–356PubMedCrossRefGoogle Scholar
  144. 144.
    Ogiwara K, Nagaoka M, Cho C-S, Akaike T (2006) Effect of photo-immobilization of epidermal growth factor on the cellular behaviors. Biochem Biophys Res Commun 345(1):255–259PubMedCrossRefGoogle Scholar
  145. 145.
    Oh KS, Han SK, Lee HS, Koo HM, Kim RS, Lee KE, Han SS, Cho SH, Yuk SH (2006) Core/shell nanoparticles with lecithin lipid cores for protein delivery. Biomacromolecules 7(8):2362–2367PubMedCrossRefGoogle Scholar
  146. 146.
    Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Investig 113(4):516–527PubMedCrossRefGoogle Scholar
  147. 147.
    Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347PubMedCrossRefGoogle Scholar
  148. 148.
    Park JS, Park K, Woo DG, Yang HN, Chung H-M, Park K-H (2008) PLGA microsphere construct coated with TGF-β 3 loaded nanoparticles for neocartilage formation. Biomacromolecules 9(8):2162–2169PubMedCrossRefGoogle Scholar
  149. 149.
    Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJW (2009a) Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater 5(6):1926–1936PubMedCrossRefGoogle Scholar
  150. 150.
    Park K-H, Lee DH, Na K (2009b) Transplantation of poly(N-isopropylacrylamide-co-vinylimidazole) hydrogel constructs composed of rabbit chondrocytes and growth factor-loaded nanoparticles for neocartilage formation. Biotechnol Lett 31(3):337–346PubMedCrossRefGoogle Scholar
  151. 151.
    Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R, Oudega M (2004) Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 25(9):1569–1582PubMedCrossRefGoogle Scholar
  152. 152.
    Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS (2010) Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 31(26):6772–6781PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Peattie RA, Pike DB, Yu B, Cai S, Shu XZ, Prestwich GD, Firpo MA, Fisher RJ (2008) Effect gelatin on heparin regulation of cytokine release from hyaluronan-based hydrogels. Drug Deliv 15(6):389–397PubMedCrossRefGoogle Scholar
  154. 154.
    Perrimon N, Pitsouli C, Shilo BZ (2012) Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 4(8):a005975PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Pike DB, Cai S, Pomraning KR, Firpo MA, Fisher RJ, Shu XZ, Prestwich GD, Peattie RA (2006) Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials 27(30):5242–5251PubMedCrossRefGoogle Scholar
  156. 156.
    Pilakka-Kanthikeel S, Atluri VSR, Sagar V, Saxena SK, Nair M (2013) Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLOS One 8(4):e62241PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Poldervaart MT, Gremmels H, van Deventer K, Fledderus JO, Öner FC, Verhaar MC, Dhert WJA, Alblas J (2014) Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release 184:58–66PubMedCrossRefGoogle Scholar
  158. 158.
    Powell RJ, Goodney P, Mendelsohn FO, Moen EK, Annex BH (2010) Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 52(6):1525–1530PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Pulavendran S, Rose C, Mandal AB (2011) Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J Nanobiotechnol 9(1):15CrossRefGoogle Scholar
  160. 160.
    Qiang W, Chaoqun L, Luna F, Jiahua S, Zhiqiang L, Ruifang L, Liwei S (2012) Heparinized magnetic mesoporous silica nanoparticles as multifunctional growth factor delivery carriers. Nanotechnology 23(48):485703CrossRefGoogle Scholar
  161. 161.
    Raiche AT, Puleo DA (2004) In vitro effects of combined and sequential delivery of two bone growth factors. Biomaterials 25(4):677–685CrossRefGoogle Scholar
  162. 162.
    Rajan SS, Liu HY, Vu TQ (2008) Ligand-bound quantum dot probes for studying the molecular scale dynamics of receptor endocytic trafficking in live cells. ACS Nano 2(6):1153–1166PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F (2006) Enhancement of protein adsorption induced by surface roughness. Langmuir 22(26):10885–10888PubMedCrossRefGoogle Scholar
  164. 164.
    Ribeiro MP, Morgado PI, Miguel SP, Coutinho P, Correia IJ (2013) Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Mater Sci Eng: C 33(5):2958–2966CrossRefGoogle Scholar
  165. 165.
    Roldán JC, Detsch R, Schaefer S, Chang E, Kelantan M, Waiss W, Reichert TE, Gurtner GC, Deisinger U (2010) Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model. J Cranio-Maxillofac Surg 38(6):423–430CrossRefGoogle Scholar
  166. 166.
    Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580(12):2879–2887PubMedCrossRefGoogle Scholar
  167. 167.
    Ruhe PQ, Hedberg EL, Padron NT, Spauwen PHM, Jansen JA, Mikos AG (2003) rhBMP-2 release from injectable poly(DL-Lactic-co-glycolic Acid)/calcium-phosphate cement composites. J Bone Joint Surg, Am 85:75CrossRefGoogle Scholar
  168. 168.
    Sachse A, Wagner A, Keller M, Wagner O, Wetzel WD, Layher F, Venbrocks RA, Hortschansky P, Pietraszczyk M, Wiederanders B, Hempel HJ, Bossert J, Horn J, Schmuck K, Mollenhauer J (2005) Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2 (BMP-2) in aged sheep. Bone 37(5):699–710PubMedCrossRefGoogle Scholar
  169. 169.
    Sakiyama-Elbert SE, Hubbell JA (2000) Controlled release of nerve growth factor from a heparin-containing fibrin-based cell ingrowth matrix. J Control Release 69(1):149–158PubMedCrossRefGoogle Scholar
  170. 170.
    Samorezov JE, Headley EB, Everett CR, Alsberg E (2016) Sustained presentation of BMP-2 enhances osteogenic differentiation of human adipose-derived stem cells in gelatin hydrogels. J Biomed Mater Res Part A 104(6):1387–1397CrossRefGoogle Scholar
  171. 171.
    Sarkar A, Tatlidede S, Scherer SS, Orgill DP, Berthiaume F (2011) Combination of stromal cell-derived factor-1 and collagen–glycosaminoglycan scaffold delays contraction and accelerates reepithelialization of dermal wounds in wild-type mice. Wound Repair Regen Off Publ Wound Healing Soc Eur Tissue Repair Soc 19(1):71–79Google Scholar
  172. 172.
    Schrier JA, DeLuca PP (2001) Porous bone morphogenetic protein-2 microspheres: polymer binding and in vitro release. AAPS PharmSciTech 2(3):66–72PubMedCentralCrossRefPubMedGoogle Scholar
  173. 173.
    Schuppan D, Schmid M, Somasundaram R, Ackermann R, Ruehl M, Nakamura T, Riecken EO (1998) Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology 114(1):139–152PubMedCrossRefGoogle Scholar
  174. 174.
    Seeherman HLR, Bouxsein M, Kim H, Li j, Smith-Adaline EA, Aiolova M, Wozney JM (2006) rhBMP-2/calcium phosphate matrix accelerates osteotomy-site healing in a nonhuman primate model at multiple treatment times and concentrations. J Bone Joint Surg 88-A(1):144–160Google Scholar
  175. 175.
    Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32(26):6183–6193PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU (2011) Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev 20(6):933–946PubMedCrossRefGoogle Scholar
  177. 177.
    Shen W, Chen X, Chen J, Yin Z, Heng BC, Chen W, Ouyang H-W (2010) The effect of incorporation of exogenous stromal cell-derived factor-1 alpha within a knitted silk- collagen sponge scaffold on tendon regeneration. Biomaterials 31(28):7239–7249PubMedCrossRefGoogle Scholar
  178. 178.
    Shevtsov MA, Nikolaev BP, Yakovleva LY, Marchenko YY, Dobrodumov AV, Mikhrina AL, Martynova MG, Bystrova OA, Yakovenko IV, Ischenko AM (2014) Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomed 9(1):273–287CrossRefGoogle Scholar
  179. 179.
    Shi Z, Neoh KG, Kang ET, Poh CK, Wang W (2009) Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules 10(6):1603–1611PubMedCrossRefGoogle Scholar
  180. 180.
    Shi W, Ji Y, Zhang X, Shu S, Wu Z (2011) Characterization of ph- and thermosensitive hydrogel as a vehicle for controlled protein delivery. J Pharm Sci 100(3):886–895PubMedCrossRefGoogle Scholar
  181. 181.
    Simmons CA, Alsberg E, Hsiong S, Kim WJ, Mooney DJ (2004) Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells. Bone 35(2):562–569PubMedCrossRefGoogle Scholar
  182. 182.
    Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA (2002) Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Double-blind, randomized, controlled clinical trial. Circulation 105(7):788–793PubMedCrossRefGoogle Scholar
  183. 183.
    Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90(3):261–280PubMedCrossRefGoogle Scholar
  184. 184.
    Sneha Maroo KRVM (2014) Treatment of periodontal intrabony defects using β-TCP alone or in combination with rhPDGF-BB: a randomized controlled clinical and radiographic study. Periodontic Restor Dent 34(6):841–847CrossRefGoogle Scholar
  185. 185.
    Steinmüller-Nethl D, Kloss FR, Najam-Ul-Haq M, Rainer M, Larsson K, Linsmeier C, Köhler G, Fehrer C, Lepperdinger G, Liu X, Memmel N, Bertel E, Huck CW, Gassner R, Bonn G (2006) Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption. Biomaterials 27(26):4547–4556PubMedCrossRefGoogle Scholar
  186. 186.
    Sumner DR, Turner TM, Urban RM, Virdi AS, Inoue N (2006) Additive enhancement of implant fixation following combined treatment with rhTGF-β2 and rhBMP-2 in a canine model. J Bone Joint Surg Ser A 88(4):806–817Google Scholar
  187. 187.
    Sun W, Sun C, Lin H, Zhao H, Wang J, Ma H, Chen B, Xiao Z, Dai J (2009) The effect of collagen-binding NGF-β on the promotion of sciatic nerve regeneration in a rat sciatic nerve rush injury model. Biomaterials 30(27):4649–4656PubMedCrossRefGoogle Scholar
  188. 188.
    Sun W, Lin H, Chen B, Zhao W, Zhao Y, Xiao Z, Dai J (2010) Collagen scaffolds loaded with collagen-binding NGF-β accelerate ulcer healing. J Biomed Mater Res Part A 92(3):887–895Google Scholar
  189. 189.
    Swiderska KW, Szlachcic A, Czyrek A, Zakrzewska M, Otlewski J (2017) Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid. Bioorg Med Chem 25(14):3685–3693PubMedCrossRefGoogle Scholar
  190. 190.
    Takagi G, Miyamoto M, Tara S, Takagi I, Takano H, Yasutake M, Tabata Y, Mizuno K (2011) Controlled-release basic fibroblast growth factor for peripheral artery disease: comparison with autologous bone marrow-derived stem cell transfer. Tissue Eng Part A 17(21–22):2787–2794PubMedCrossRefGoogle Scholar
  191. 191.
    Takahashi T, Tominaga T, Watabe N, Toshimitu A, Yokobori J, Sasada H, Yoshimoto T (1999) Use of porous hydroxyapatite graft containing recombinant human bone morphogenetic protein-2 for cervical fusion in a caprine model. J Neurosurg Spine 90(2):224–230CrossRefGoogle Scholar
  192. 192.
    Tan XW, Lakshminarayanan R, Liu SP, Goh E, Tan D, Beuerman RW, Mehta JS (2012) Dual functionalization of titanium with vascular endothelial growth factor and β-defensin analog for potential application in keratoprosthesis. J Biomed Mater Res Part B Appl Biomater 100B(8):2090–2100CrossRefGoogle Scholar
  193. 193.
    Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T, Murakami T, Ochi M (2005) Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res Part A 73A(3):255–263CrossRefGoogle Scholar
  194. 194.
    Tatekawa Y, Kawazoe N, Chen G, Shirasaki Y, Komuro H, Kaneko M (2010) Tracheal defect repair using a PLGA–collagen hybrid scaffold reinforced by a copolymer stent with bFGF- impregnated gelatin hydrogel. Pediatr Surg Int 26(6):575–580PubMedCrossRefGoogle Scholar
  195. 195.
    Thakare KDV (2012) Randomized controlled clinical study of rhPDGF-BB + β-TCP versus HA + β- TCP for the treatment of infrabony periodontal defects: clinical and radiographic results. Int J Periodontic Restor Dent 32(6):689–696Google Scholar
  196. 196.
    Theiss HD, Brenner C, Engelmann MG, Zaruba M-M, Huber B, Henschel V, Mansmann U, Wintersperger B, Reiser M, Steinbeck G, Franz W-M (2010) Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-Trial) — rationale, design and first interim analysis. Int J Cardiol 145(2):282–284PubMedCrossRefGoogle Scholar
  197. 197.
    Thomas TP, Shukla R, Kotlyar A, Liang B, Ye JY, Norris TB, Baker JR (2008) Dendrimer−epidermal growth factor conjugate displays superagonist activity. Biomacromolecules 9(2):603–609PubMedCrossRefGoogle Scholar
  198. 198.
    Tong X, Lee S, Bararpour L, Yang F (2015) Long-term controlled protein release from poly(ethylene glycol) hydrogels by modulating mesh size and degradation. Macromol Biosci 15(12):1679–1686PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Toth JM, Boden SD, Burkus JK, Badura JM, Peckham SM, McKay WF (2009) Short-term osteoclastic activity induced by locally high concentrations of recombinant human bone morphogenetic protein–2 in a cancellous bone environment. Spine 34(6):539–550PubMedCrossRefGoogle Scholar
  200. 200.
    Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38:1424PubMedCrossRefGoogle Scholar
  201. 201.
    Tufvesson E, Westergren-Thorsson G (2002) Tumour necrosis factor-α interacts with biglycan and decorin. FEBS Lett 530(1-3):124–128PubMedCrossRefGoogle Scholar
  202. 202.
    Tuszynski MH, Yang JH, Barba D et al (2015) Nerve growth factor gene therapy: activation of neuronal responses in alzheimer disease. JAMA Neurol 72(10):1139–1147PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Upton Z, Cuttle L, Noble A, Kempf M, Topping G, Malda J, Xie Y, Mill J, Harkin DG, Kravchuk O, Leavesley DI, Kimble RM (2008) Vitronectin: growth factor complexes hold potential as a wound therapy approach. J Investig Dermatol 128(6):1535–1544PubMedCrossRefGoogle Scholar
  204. 204.
    Vanden Berg-Foels WS (2013) In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng Part B Rev 20(1):28–39CrossRefGoogle Scholar
  205. 205.
    Vilchis-Landeros MM, Montiel JL, Mendoza V, Mendoza-Hernandez G, Lopez-Casillas F (2001) Recombinant soluble betaglycan is a potent and isoform-selective transforming growth factor-β neutralizing agent. Biochem J 355(1):215–222PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Vulic K, Shoichet MS (2014) Affinity-based drug delivery systems for tissue repair and regeneration. Biomacromolecules 15(11):3867–3880PubMedCrossRefGoogle Scholar
  207. 207.
    Walchli T, Wacker A, Frei K, Regli L, Schwab ME, Hoerstrup SP, Gerhardt H, Engelhardt B (2015) Wiring the vascular network with neural cues: a CNS perspective. Neuron 87(2):271–296PubMedCrossRefGoogle Scholar
  208. 208.
    Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1(1):87–105PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Wang S, Ju W, Shang P, Lei L, Nie H (2015) Core-shell microspheres delivering FGF-2 and BMP- 2 in different release patterns for bone regeneration. J Mater Chem B 3(9):1907–1920CrossRefGoogle Scholar
  210. 210.
    Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S (2017) Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. Npg Asia Mater 9:e435CrossRefGoogle Scholar
  211. 211.
    Wei G, Jin Q, Giannobile WV, Ma PX (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28(12):2087–2096PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Wells A, Nuschke A, Yates CC (2016) Skin tissue repair: matrix microenvironmental influences. Matrix Biol 49:25–36PubMedCrossRefGoogle Scholar
  213. 213.
    Windisch P, Stavropoulos A, Molnár B, Szendröi-Kiss D, Szilágyi E, Rosta P, Horváth A, Capsius B, Wikesjö UME, Sculean A (2012) A phase IIa randomized controlled pilot study evaluating the safety and clinical outcomes following the use of rhGDF-5/β-TCP in regenerative periodontal therapy. Clin Oral Investig 16(4):1181–1189PubMedCrossRefGoogle Scholar
  214. 214.
    Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiol (Bethesda) 25(2):85–101Google Scholar
  215. 215.
    Wu C, Fan W, Chang J, Xiao Y (2013) Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor. J Biomater Appl 28(3):367–374PubMedCrossRefGoogle Scholar
  216. 216.
    Xian CJ (2007) Roles of epidermal growth factor family in the regulation of postnatal somatic growth. Endocr Rev 28(3):284–296PubMedCrossRefGoogle Scholar
  217. 217.
    Xie Y, Ye L, Zhang X, Cui W, Lou J, Nagai T, Hou X (2005) Transport of nerve growth factor encapsulated into liposomes across the blood–brain barrier: in vitro and in vivo studies. J Control Release 105(1):106–119PubMedCrossRefGoogle Scholar
  218. 218.
    Xie W, Zhang K, Cui B (2012) Functional characterization and axonal transport of quantum dot labeled BDNF. Integr Biol 4(8):953–960CrossRefGoogle Scholar
  219. 219.
    Yamachika E, Tsujigiwa H, Shirasu N, Ueno T, Sakata Y, Fukunaga J, Mizukawa N, Yamada M, Sugahara T (2009) Immobilized recombinant human bone morphogenetic protein-2 enhances the phosphorylation of receptor-activated Smads. J Biomed Mater Res Part A 88A(3):599–607CrossRefGoogle Scholar
  220. 220.
    Yang P, Wang C, Shi Z, Huang X, Dang X, Li X, Lin S-F, Wang K (2010) rhVEGF165 delivered in a porous β-tricalcium phosphate scaffold accelerates bridging of critical-sized defects in rabbit radii. J Biomed Mater Res Part A 92A(2):626–640Google Scholar
  221. 221.
    Yang HS, La W-G, Cho Y-M, Shin W, Yeo G-D, Kim B-S (2012) Comparison between heparin- conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration. Exp Mol Med 44:350PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Ye L, Zhang W, Su L-P, Haider HK, Poh K-K, Galupo MJ, Songco G, Ge R-W, Tan H-C, Sim EKW (2011) Nanoparticle based delivery of hypoxia-regulated VEGF transgene system combined with myoblast engraftment for myocardial repair. Biomaterials 32(9):2424–2431PubMedCrossRefGoogle Scholar
  223. 223.
    Yoon JJ, Chung HJ, Lee HJ, Park TG (2006) Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J Biomed Mater Res A 79((4):934–942CrossRefGoogle Scholar
  224. 224.
    Zhang S, Uludağ H (2009) Nanoparticulate systems for growth factor delivery. Pharm Res 26(7):1561PubMedCrossRefGoogle Scholar
  225. 225.
    Zhang J, Postovit LM, Wang D, Gardiner RB, Harris R, Abdul M, Thomas A (2009) In situ loading of basic fibroblast growth factor within porous silica nanoparticles for a prolonged release. Nanoscale Res Lett 4(11):1297–1302PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Zhang H, Migneco F, Lin C-Y, Hollister SJ (2010) Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng Part A 16(11):3441–3448PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Zhang C, Chen J, Feng C, Shao X, Liu Q, Zhang Q, Pang Z, Jiang X (2014) Intranasal nanoparticles of basic fibroblast growth factor for brain delivery to treat Alzheimer’s disease. Int J Pharm 461(1):192–202PubMedCrossRefGoogle Scholar
  228. 228.
    Zhao Y-Z, Li X, Lu C-T, Lin M, Chen L-J, Xiang Q, Zhang M, Jin R-R, Jiang X, Shen X-T, Li X-K, Cai J (2014) Gelatin nanostructured lipid carriers-mediated intranasal delivery of basic fibroblast growth factor enhances functional recovery in hemiparkinsonian rats. Nanomed Nanotechnol Biol Med 10(4):755–764CrossRefGoogle Scholar
  229. 229.
    Zhou X, Feng W, Qiu K, Chen L, Wang W, Nie W, Mo X, He C (2015) BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl Mater Interfaces 7(29):15777–15789PubMedCrossRefGoogle Scholar
  230. 230.
    Zisch AH, Lutolf MP, Hubbell JA (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc Pathol 12(6):295–310PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pau Atienza-Roca
    • 1
  • Xiaolin Cui
    • 1
  • Gary J. Hooper
    • 1
  • Tim B. F. Woodfield
    • 1
  • Khoon S. Lim
    • 1
    Email author
  1. 1.Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurchNew Zealand

Personalised recommendations