Advertisement

The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases

  • Helena Ferreira
  • Joana F. Fangueiro
  • Nuno M. Neves
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Autoimmune diseases (ADs) constitute a heterogeneous group of more than 100 pathophysiological conditions in which an immune response against the self is observed. The incidence and prevalence of these chronic diseases are increasing with inherently high social and economic impacts. The currently available therapies generally focus on reducing the activity of the immune system and, therefore, can present severe side effects such as enhanced patient susceptibility to opportunistic infections. Advanced therapies emerged as promising treatments and with real curative potential for ADs. Additionally, the use of natural polymers to engineer gene therapies, cell therapies and/or tissue-engineered medicinal products presents specific advantages. Natural polymers present higher affinity with biological systems than synthetic polymers, and frequently have a chemical structure and motifs similar to those existing in the extracellular matrix of the tissues. They also have good biological performance, making them very strong candidates for advanced therapy medicinal products. This review discusses the therapeutic advances and provides demonstrative examples of the role of natural-based biomaterials for the development of advanced therapies for ADs.

Keywords

Advanced therapies Autoimmune diseases Cell therapy Gene therapy Natural-based biomaterials Stem cells 

Notes

Acknowledgements

The authors wish to acknowledge the Programa Operacional Norte 2020 under the research project FROnTHERA (NORTE-01-0145-FEDER-000023) and the Fundação para a Ciência e Tecnologia do Ministério da Ciência e Tecnologia (FCT, Portugal) under the research project SPARTAN (PTDC/CTM-BIO/4388/2014).

References

  1. 1.
    Aiuti A, Cossu G, de Felipe P, Galli MC, Narayanan G, Renner M, Voltz-Girolt C (2013) The committee for advanced therapies’ of the European Medicines Agency reflection paper on management of clinical risks deriving from insertional mutagenesis. Hum Gene Ther Clin Dev 24(2):47–54.  https://doi.org/10.1089/humc.2013.119 CrossRefPubMedGoogle Scholar
  2. 2.
    Anna-Maria M, Andrea F, Hugo AK, Ziya K (2015) Mouse models of autoimmune diseases -autoimmune myocarditis. Curr Pharm Des 21(18):2498–2512.  https://doi.org/10.2174/1381612821666150316123711 CrossRefGoogle Scholar
  3. 3.
    Aravamudhan A, Ramos DM, Nada AA, Kumbar SG (2014) Chapter 4: Natural polymers: polysaccharides and their derivatives for biomedical applications natural and synthetic biomedical polymers. Elsevier, Oxford, pp 67–89.  https://doi.org/10.1016/B978-0-12-396983-5.00004-1 CrossRefGoogle Scholar
  4. 4.
    Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, Freedman MS (2016) Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet 388(10044):576–585.  https://doi.org/10.1016/s0140-6736(16)30169-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Baharlou R, Ahmadi-Vasmehjani A, Faraji F, Atashzar MR, Khoubyari M, Ahi S, Navabi SS (2017) Human adipose tissue-derived mesenchymal stem cells in rheumatoid arthritis: regulatory effects on peripheral blood mononuclear cells activation. Int Immunopharmacol 47:59–69.  https://doi.org/10.1016/j.intimp.2017.03.016 CrossRefPubMedGoogle Scholar
  6. 6.
    Bahram M, Mohseni N, Moghtader M (2016) An introduction to hydrogels and some recent applications. In: Majee SB (ed) Emerging concepts in analysis and applications of hydrogels. InTech, Rijeka, p Ch. 02.  https://doi.org/10.5772/64301 CrossRefGoogle Scholar
  7. 7.
    Bai L, Shao H, Wang H, Zhang Z, Su C, Dong L, Zhang X (2017) Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis. Sci Rep 7(1):4323.  https://doi.org/10.1038/s41598-017-04559-y CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bassi ÊJ, Moraes-Vieira PMM, Moreira-Sá CSR, Almeida DC, Vieira LM, Cunha CS, Câmara NOS (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61(10):2534–2545.  https://doi.org/10.2337/db11-0844 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405.  https://doi.org/10.1016/j.jconrel.2015.07.030 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bhatia S (2016) Natural polymers vs synthetic polymer. In: Springer C (ed) Natural polymer drug delivery systems. Springer, Cham.  https://doi.org/10.1007/978-3-319-41129-3 CrossRefGoogle Scholar
  11. 11.
    Bhattacharya S, Biswas J (2010) Understanding membranes through the molecular design of lipids. Langmuir 26(7):4642–4654.  https://doi.org/10.1021/la9011718 CrossRefPubMedGoogle Scholar
  12. 12.
    Blach-Olszewska Z, Leszek J (2007) Mechanisms of over-activated innate immune system regulation in autoimmune and neurodegenerative disorders. Neuropsychiatr Dis Treat 3(3):365–372 ISSN: 1176-6328PubMedPubMedCentralGoogle Scholar
  13. 13.
    Blessing D, Déglon N (2016) Adeno-associated virus and lentivirus vectors: a refined toolkit for the central nervous system. Curr Opin Virol 21:61–66.  https://doi.org/10.1016/j.coviro.2016.08.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Briuglia M-L, Rotella C, McFarlane A, Lamprou DA (2015) Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 5(3):231–242.  https://doi.org/10.1007/s13346-015-0220-8 CrossRefPubMedGoogle Scholar
  15. 15.
    Bruno V, Battaglia G, Nicoletti F (2011) The advent of monoclonal antibodies in the treatment of chronic autoimmune diseases. Neurol Sci 31(3):283–288.  https://doi.org/10.1007/s10072-010-0382-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Cai G, Zhang J, Liu L, Shen Q (2005) Successful treatment of experimental autoimmune myocarditis by adenovirus-mediated gene transfer of antisense CIITA. J Mol Cell Cardiol 38(4):593–605.  https://doi.org/10.1016/j.yjmcc.2005.01.009 CrossRefPubMedGoogle Scholar
  17. 17.
    Cai Z, Zhang W, Yang F, Yu L, Yu Z, Pan J, Wang J (2012) Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res 22(3):607–610.  https://doi.org/10.1038/cr.2011.196 CrossRefPubMedGoogle Scholar
  18. 18.
    Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 695:17–39.  https://doi.org/10.1007/978-1-60761-984-0_2 CrossRefPubMedGoogle Scholar
  19. 19.
    Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479.  https://doi.org/10.1007/s00586-008-0745-3 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Charles A, Janeway J, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20(1):197–216.  https://doi.org/10.1146/annurev.immunol.20.083001.084359 CrossRefGoogle Scholar
  21. 21.
    Cho JH, Feldman M (2015) Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat Med 21:730.  https://doi.org/10.1038/nm.3897 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Claudius C, Rashmi G, Hema M, Hanno N, Christiane JB, Reinhard K, Peter JN (2007) Genetically engineered stem cells for therapeutic gene delivery. Curr Gene Ther 7(4):249–260.  https://doi.org/10.2174/156652307781369119 CrossRefGoogle Scholar
  23. 23.
    Clinical Trials Gov (2017) https://clinicaltrials.gov/. Accessed in 23/01/2018.
  24. 24.
    Coronel-Restrepo N, Posso-Osorio I, Naranjo-Escobar J, Tobón GJ (2017) Autoimmune diseases and their relation with immunological, neurological and endocrinological axes. Autoimm Rev 16(7):684–692.  https://doi.org/10.1016/j.autrev.2017.05.002 CrossRefGoogle Scholar
  25. 25.
    Courties G, Baron M, Presumey J, Escriou V, van Lent P, Scherman D, Davignon JL (2011) Cytosolic phospholipase A2alpha gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis. Arthritis Rheum 63(3):681–690.  https://doi.org/10.1002/art.30174 CrossRefPubMedGoogle Scholar
  26. 26.
    Crystal RG (2014) Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther 25(1):3–11.  https://doi.org/10.1089/hum.2013.2527 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cupino TL, Watson BA, Cupino AC, Oda K, Ghamsary MG, Soriano S, Kirsch WM (2018) Stability and bioactivity of chitosan as a transfection agent in primary human cell cultures: a case for chitosan-only controls. Carbohydr Polym 180:376–384.  https://doi.org/10.1016/j.carbpol.2017.10.021 CrossRefPubMedGoogle Scholar
  28. 28.
    Dang JM, Leong KW (2006) Natural polymers for gene delivery and tissue engineering. Adv Drug Deliv Rev 58(4):487–499.  https://doi.org/10.1016/j.addr.2006.03.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Dass CR, Choong PF (2006) Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release 113(2):155–163.  https://doi.org/10.1016/j.jconrel.2006.04.009 CrossRefPubMedGoogle Scholar
  30. 30.
    de Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67-68:15–34.  https://doi.org/10.1016/j.addr.2013.11.005 CrossRefPubMedGoogle Scholar
  31. 31.
    EMA, European Medicinal Agency (2017) Summaries of scientific recommendations on classification of advanced therapy medicinal productsGoogle Scholar
  32. 32.
    Enderami SE, Soleimani M, Mortazavi Y, Nadri S, Salimi A (2017) Generation of insulin-producing cells from human adipose-derived mesenchymal stem cells on PVA scaffold by optimized differentiation protocol. J Cell Physiol.  https://doi.org/10.1002/jcp.26266 CrossRefGoogle Scholar
  33. 33.
    European Commission (2009) Commission Directive 2009/120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products. Off J Eur UnionGoogle Scholar
  34. 34.
    Fahy E, Cotter D, Sud M, Subramaniam S (2011) Lipid classification, structures and tools. Biochim Biophys Acta 1811(11):637–647.  https://doi.org/10.1016/j.bbalip.2011.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84(21):7413–7417 ISSN: 0027-8424CrossRefGoogle Scholar
  36. 36.
    Ferreira H, Lucio M, Lima JL, Matos C, Reis S (2005a) Effects of diclofenac on EPC liposome membrane properties. Anal Bioanal Chem 382(5):1256–1264.  https://doi.org/10.1007/s00216-005-3251-z CrossRefPubMedGoogle Scholar
  37. 37.
    Ferreira H, Lucio M, Lima JL, Matos C, Reis S (2005b) Interaction of clonixin with EPC liposomes used as membrane models. J Pharm Sci 94(6):1277–1287.  https://doi.org/10.1002/jps.20351 CrossRefPubMedGoogle Scholar
  38. 38.
    Finn JD, Nichols TC, Svoronos N, Merricks EP, Bellenger DA, Zhou S, Arruda VR (2012) The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood 120(23):4521–4523.  https://doi.org/10.1182/blood-2012-06-440123 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ganesh BB, Cheatem DM, Sheng JR, Vasu C, Prabhakar BS (2009) GM-CSF-induced CD11c+CD8a—dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis. Int Immun 21(3):269–282.  https://doi.org/10.1093/intimm/dxn147 CrossRefPubMedGoogle Scholar
  40. 40.
    Ganju A, Khan S, Hafeez BB, Behrman SW, Yallapu MM, Chauhan SC, Jaggi M (2017) miRNA nanotherapeutics for cancer. Drug Discov Today 22(2):424–432.  https://doi.org/10.1016/j.drudis.2016.10.014 CrossRefPubMedGoogle Scholar
  41. 41.
    Gershwin ME, Shoenfeld Y (2011) Cutting-edge issues in organ-specific autoimmunity. Clin Rev Allergy Immunol 41(2):123–125.  https://doi.org/10.1007/s12016-011-8283-x CrossRefPubMedGoogle Scholar
  42. 42.
    Gianchecchi E, Delfino DV, Fierabracci A (2017) NK cells in autoimmune diseases: linking innate and adaptive immune responses. Autoimmu Rev.  https://doi.org/10.1016/j.autrev.2017.11.018 CrossRefGoogle Scholar
  43. 43.
    Grigoras AG (2017) Polymer-lipid hybrid systems used as carriers for insulin delivery. Nanomedicine 13(8):2425–2437.  https://doi.org/10.1016/j.nano.2017.08.005 CrossRefPubMedGoogle Scholar
  44. 44.
    Hajizadeh-Sikaroodi S, Hosseini A, Fallah A, Estiri H, Noormohammadi Z, Salehi M, Kazemi B (2014) Lentiviral mediating genetic engineered mesenchymal stem cells for releasing IL-27 as a gene therapy approach for autoimmune diseases. Cell J (Yakhteh) 16(3):255–262 ISSN: 2228-5806Google Scholar
  45. 45.
    Hanna E, Rémuzat C, Auquier P, Toumi M (2016) Advanced therapy medicinal products: current and future perspectives. J Mark Access Health Pol 4.  https://doi.org/10.3402/jmahp.v4.31036 CrossRefGoogle Scholar
  46. 46.
    Hintermann E, Ehser J, Bayer M, Pfeilschifter JM, Christen U (2013) Mechanism of autoimmune hepatic fibrogenesis induced by an adenovirus encoding the human liver autoantigen cytochrome P450 2D6. J Autoimm 44:49–60.  https://doi.org/10.1016/j.jaut.2013.05.001 CrossRefGoogle Scholar
  47. 47.
    Hou X, Zhou J, Yang R, Liu SS, Bi M, Liu T, Li YS (2017) Effect of halofuginone on the pathogenesis of autoimmune thyroid disease in different mice models. Endocr Metab Immune Disord Drug Targets 17(2):141–148.  https://doi.org/10.2174/1871530317666170424101256 CrossRefPubMedGoogle Scholar
  48. 48.
    Hung ME, Leonard JN (2016) A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles 5:1–13.  https://doi.org/10.3402/jev.v5.31027 CrossRefGoogle Scholar
  49. 49.
    Juric MK, Ghimire S, Ogonek J, Weissinger EM, Holler E, van Rood JJ, Greinix HT (2016) Milestones of hematopoietic stem cell transplantation – from first human studies to current developments. Front Immunol 7:470.  https://doi.org/10.3389/fimmu.2016.00470 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Katsiougiannis S (2015) Extracellular vesicles: evolving contributors in autoimmunity. Immunopathol Dis Therap 6(3–4):163–170.  https://doi.org/10.1615/ForumImmunDisTher.2016016491 CrossRefGoogle Scholar
  51. 51.
    Kelsey PJ, Oliveira MC, Badoglio M, Sharrack B, Farge D, Snowden JA (2016) Haematopoietic stem cell transplantation in autoimmune diseases: from basic science to clinical practice. Curr Res Transl Med 64(2):71–82.  https://doi.org/10.1016/j.retram.2016.03.003 CrossRefPubMedGoogle Scholar
  52. 52.
    Khorsandi L, Khodadadi A, Nejad-Dehbashi F, Saremy S (2015) Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells. Cell Tissue Res 361(3):745–753.  https://doi.org/10.1007/s00441-015-2140-9 CrossRefPubMedGoogle Scholar
  53. 53.
    Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C, Apparailly F (2008) Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 58(8):2356–2367.  https://doi.org/10.1002/art.23660 CrossRefPubMedGoogle Scholar
  54. 54.
    Kim MJ, Park J-S, Lee SJ, Jang J, Park JS, Back SH, Kim K (2015) Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J Control Release 216:140–148.  https://doi.org/10.1016/j.jconrel.2015.08.025 CrossRefPubMedGoogle Scholar
  55. 55.
    Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD (2007) Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4. J Immunol 179(4):2242–2249.  https://doi.org/10.4049/jimmunol.179.4.2242 CrossRefPubMedGoogle Scholar
  56. 56.
    Kong F, Liu G, Zhou S, Guo J, Chen S, Wang Z (2017a) Superior transfection efficiency of phagocytic astrocytes by large chitosan/DNA nanoparticles. Int J Biol Macromol 105:1473–1481.  https://doi.org/10.1016/j.ijbiomac.2017.06.061 CrossRefPubMedGoogle Scholar
  57. 57.
    Kong Y, Wang J, Shen LJ, Zhu YQ, Shen H, Shi Q, Huang L (2017b) B7-2 gene silencing by lentivirus-mediated delivery of shRNA reduces progression of experimental lupus nephritis. Int J Clin Exp Pathol 10(6):6198–6209 ISSN:1936–2625Google Scholar
  58. 58.
    Kotsiafti A, Eleutheriou D, Stabouli S (2017) Atherosclerosis as an autoimmune disease. Hell J Atheroscler 8(3):76–85Google Scholar
  59. 59.
    Kotterman MA, Chalberg TW, Schaffer DV (2015) Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 17:63–89.  https://doi.org/10.1146/annurev-bioeng-071813-104938 CrossRefGoogle Scholar
  60. 60.
    Lee RJ, Huang L (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer. J Biol Chem 271(14):8481–8487.  https://doi.org/10.1074/jbc.271.14.8481 CrossRefPubMedGoogle Scholar
  61. 61.
    Lee SJ, Lee A, Hwang SR, Park J-S, Jang J, Huh MS, Kim K (2014) TNF-α gene silencing using polymerized siRNA/Thiolated glycol chitosan nanoparticles for rheumatoid arthritis. Mol Ther 22(2):397–408.  https://doi.org/10.1038/mt.2013.245 CrossRefPubMedGoogle Scholar
  62. 62.
    Lerner A, Jeremias P, Matthias T (2015) The world incidence and prevalence of autoimmune diseases is increasing. Int J Celiac Dis 3(4):151–155.  https://doi.org/10.12691/ijcd-3-4-8 CrossRefGoogle Scholar
  63. 63.
    Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Nahrendorf M (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005.  https://doi.org/10.1038/nbt.1989 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Li C-y, Wu X-y, Tong J-b, Yang X-x, Zhao J-l, Zheng Q-f, Ma Z-j (2015) Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Res Ther 6(1):55.  https://doi.org/10.1186/s13287-015-0066-5 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Pei X (2007) Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Physiol 211(1):36–44.  https://doi.org/10.1002/jcp.20897 CrossRefPubMedGoogle Scholar
  66. 66.
    Lin G, Wang G, Liu G, Yang L-J, Chang L-J, Lue TF, Lin C-S (2009) Treatment of type 1 diabetes with adipose tissue–derived stem cells expressing pancreatic duodenal Homeobox 1. Stem Cells Dev 18(10):1399–1406.  https://doi.org/10.1089/scd.2009.0010 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lin J, Zhi Y, Mays L, Wilson JM (2007) Vaccines based on novel adeno-associated virus vectors elicit aberrant CD8+ T-cell responses in mice. J Virol 81(21):11840–11849.  https://doi.org/10.1128/jvi.01253-07 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Liu L, Liu Y, Yuan M, Xu L, Sun H (2017a) Elevated expression of microRNA-873 facilitates Th17 differentiation by targeting forkhead box O1 (Foxo1) in the pathogenesis of systemic lupus erythematosus. Biochem Biophys Res Commun 492(3):453–460.  https://doi.org/10.1016/j.bbrc.2017.08.075 CrossRefPubMedGoogle Scholar
  69. 69.
    Liu S, Kiyoi T, Takemasa E, Maeyama K (2017b) Intra-articular lentivirus-mediated gene therapy targeting CRACM1 for the treatment of collagen-induced arthritis. J Pharmacol Sci 133(3):130–138.  https://doi.org/10.1016/j.jphs.2017.02.001 CrossRefPubMedGoogle Scholar
  70. 70.
    Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME (2010) Definition of human autoimmunity – autoantibodies versus autoimmune disease. Autoimmunol Rev 9(5):A259–A266.  https://doi.org/10.1016/j.autrev.2009.12.002. CrossRefGoogle Scholar
  71. 71.
    Long R, Liu Y, Wang S, Ye L, He P (2017) Co-microencapsulation of BMSCs and mouse pancreatic β cells for improving the efficacy of type I diabetes therapy. Int J Artif Organs 40(4):169–175.  https://doi.org/10.5301/ijao.5000555 CrossRefPubMedGoogle Scholar
  72. 72.
    Lu X, Wang X, Nian H, Yang D, Wei R (2017) Mesenchymal stem cells for treating autoimmune dacryoadenitis. Stem Cell Res Ther 8:126.  https://doi.org/10.1186/s13287-017-0593-3 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lucas CL, Lenardo MJ (2015) Identifying genetic determinants of autoimmunity and immune dysregulation. Curr Opin Immunol 37:28–33.  https://doi.org/10.1016/j.coi.2015.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Makar TK, Bever CT, Singh IS, Royal W, Sahu SN, Sura TP, Trisler D (2009) Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol 210(1):40–51.  https://doi.org/10.1016/j.jneuroim.2009.02.017 CrossRefPubMedGoogle Scholar
  75. 75.
    Mandke R, Singh J (2012) Cationic nanomicelles for delivery of plasmids encoding Interleukin-4 and Interleukin-10 for prevention of autoimmune diabetes in mice. Pharm Res 29(3):883–897.  https://doi.org/10.1007/s11095-011-0616-1 CrossRefPubMedGoogle Scholar
  76. 76.
    Mano JF, Silva GA, AzevedoHS MPB, Sousa RA, Silva S, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030.  https://doi.org/10.1098/rsif.2007.0220 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Martins A, Ferreira H, Reis RL, Neves NM (2016a) Delivery systems made of natural-origin polymers for tissue engineering and regenerative medicine applications. In: Biomaterials from nature for advanced devices and therapies. Wiley, Hoboken, pp 581–611.  https://doi.org/10.1002/9781119126218.ch31 CrossRefGoogle Scholar
  78. 78.
    Martins M, Ribeiro D, Martins A, Reis RL, Neves NM (2016b) Extracellular vesicles derived from osteogenically induced human bone marrow mesenchymal stem cells can modulate lineage commitment. Stem Cell Rep 6(3):284–291.  https://doi.org/10.1016/j.stemcr.2016.01.001 CrossRefGoogle Scholar
  79. 79.
    Mascolo M, McNeill A, Fernandes M (2017) Autoimmune diseases – modern diseases. Available at http://www.europarl.europa.eu/supporting-analyses. Accessed Jan 2018
  80. 80.
    Mincheva-Nilsson L, Baranov V (2010) The role of placental exosomes in reproduction. Am J Reprod Immunol 63(6):520–533.  https://doi.org/10.1111/j.1600-0897.2010.00822.x- CrossRefPubMedGoogle Scholar
  81. 81.
    Miralles M, Eixarch H, Tejero M, Costa C, Hirota K, Castano AR, Chillon M (2017) Clinical and histopathological amelioration of experimental autoimmune encephalomyelitis by AAV vectors expressing a soluble interleukin-23 receptor. Neurotherapeutics 14(4):1095–1106.  https://doi.org/10.1007/s13311-017-0545-8 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Mooney DJ, Vandenburgh H (2008) Cell delivery mechanisms for tissue repair. Cell Stem Cell 2(3):205–213.  https://doi.org/10.1016/j.stem.2008.02.005 CrossRefPubMedGoogle Scholar
  83. 83.
    Morrow D, Ussi A, Migliaccio G (2017) Addressing pressing needs in the development of advanced therapies. Front Bioeng Biotechnol 5:55.  https://doi.org/10.3389/fbioe.2017.00055 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Motte E, Szepessy E, Suenens K, Stange G, Bomans M, Jacobs-Tulleneers-Thevissen D, Pipeleers D (2014) Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab 307(9):E838–E846.  https://doi.org/10.1152/ajpendo.00219.2014 CrossRefPubMedGoogle Scholar
  85. 85.
    Naldini L, Blömer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93(21):11382–11388 ISSN: 0027–8424CrossRefGoogle Scholar
  86. 86.
    Ndidi CN, Nelson AO, Okezie IA (2014) Naturapolyceutics: the science of utilizing natural polymers for drug delivery. Polymers 6(5):1312–1332.  https://doi.org/10.3390/polym6051312 CrossRefGoogle Scholar
  87. 87.
    Negre O, Bartholomae C, Beuzard Y, Cavazzana M, Christiansen L, Courne C, Veres G (2015) Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of beta-thalassemia and sickle cell disease. Curr Gene Ther 15(1):64–81 ISSN: 1566-5232CrossRefGoogle Scholar
  88. 88.
    Ngo ST, Steyn FJ, McCombe PA (2014) Gender differences in autoimmune disease. Front Neuroendocrinol 35(3):347–369.  https://doi.org/10.1016/j.yfrne.2014.04.004. CrossRefPubMedGoogle Scholar
  89. 89.
    O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95.  https://doi.org/10.1016/S1369-7021(11)70058-X. CrossRefGoogle Scholar
  90. 90.
    Patel P, Chatterjee S (2018) Chapter 1: Innate and adaptive immunity: barriers and receptor-based recognition immunity and inflammation in health and disease. Academic Press, pp 3–13.  https://doi.org/10.1016/B978-0-12-805417-8.00001-9 CrossRefGoogle Scholar
  91. 91.
    Ra JC, Kang SK, Shin IS, Park HG, Joo SA, Kim JG, Kurtz A (2011) Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells. J Transl Med 9:181.  https://doi.org/10.1186/1479-5876-9-181 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Raveendran S, Rochani AK, Maekawa T, Kumar DS (2017) Smart carriers and nanohealers: a nanomedical insight on natural polymers. Materials (Basel) 10(8).  https://doi.org/10.3390/ma10080929 CrossRefGoogle Scholar
  93. 93.
    Rose NR (2004) Autoimmune disease 2002: an overview. J Investig Dermatol Symp Proc 9(1):1–4.  https://doi.org/10.1111/j.1087-0024.2004.00837.x CrossRefPubMedGoogle Scholar
  94. 94.
    Rosenblum MD, Gratz IK, Paw JS, Abbas AK (2012) Treating human autoimmunity: current practice and future prospects. Sci Transl Med 4(125):125sr121.  https://doi.org/10.1126/scitranslmed.3003504 CrossRefGoogle Scholar
  95. 95.
    Satija NK, Singh VK, Verma YK, Gupta P, Sharma S, Afrin F, Gurudutta GU (2009) Mesenchymal stem cell-based therapy: a new paradigm in regenerative medicine. J Cell Mol Med 13(11–12):4385–4402.  https://doi.org/10.1111/j.1582-4934.2009.00857.x CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Scully C (2014) 18 – Autoimmune disease Scully’s medical problems in dentistry, 7th edn. Churchill Livingstone, Oxford, pp 466–480 ISBN: 978-0-7020-5401-3CrossRefGoogle Scholar
  97. 97.
    Sharon D, Kamen A (2018) Advancements in the design and scalable production of viral gene transfer vectors. Biotechnol Bioeng 115(1):25–40.  https://doi.org/10.1002/bit.26461 CrossRefPubMedGoogle Scholar
  98. 98.
    Shigemoto-Kuroda T, Oh JY, D-k K, Jeong HJ, Park SY, Lee HJ, Lee RH (2017) MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Rep 8(5):1214–1225.  https://doi.org/10.1016/j.stemcr.2017.04.008 CrossRefGoogle Scholar
  99. 99.
    Shu S-A, Wang J, Tao M-H, Leung PSC (2015) Gene therapy for autoimmune disease. Clin Rev Allergy Immunol 49(2):163–176.  https://doi.org/10.1007/s12016-014-8451-x CrossRefPubMedGoogle Scholar
  100. 100.
    Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36(9):1254–1276.  https://doi.org/10.1016/j.progpolymsci.2011.05.003. CrossRefGoogle Scholar
  101. 101.
    Sokol M, Wabl M, Ruiz IR, Pedersen FS (2014) Novel principles of gamma-retroviral insertional transcription activation in murine leukemia virus-induced end-stage tumors. Retrovirology 11:36.  https://doi.org/10.1186/1742-4690-11-36 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Song L, Sun Z, Kim DS, Gou W, Strange C, Dong H, Wang H (2017) Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function. Stem Cell Res Ther 8(1):192.  https://doi.org/10.1186/s13287-017-0627-x CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Stancu IC, Lungu A, Iovu H (2014) 3 – Hydrogels for bone regeneration biomaterials for bone regeneration (pp 62–86). Woodhead Publishing.  https://doi.org/10.1533/9780857098104.1.62.CrossRefGoogle Scholar
  104. 104.
    Stepien A, Dabrowska NL, Maciagowska M, Macoch RP, Zolocinska A, Mazur S, Pojda Z (2016) Clinical application of autologous adipose stem cells in patients with multiple sclerosis: preliminary results. Mediat Inflamm 6:5302120.  https://doi.org/10.1155/2016/5302120 CrossRefGoogle Scholar
  105. 105.
    Stewart PL, Burnett RM (1995) Adenovirus structure by X-ray crystallography and electron microscopy. In: Doerfler W, Böhm P (eds) The molecular repertoire of adenoviruses I, Current topics in microbiology and immunology, vol 199/1. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-642-79496-4_2 CrossRefGoogle Scholar
  106. 106.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Zhang H-G (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614.  https://doi.org/10.1038/mt.2010.105. CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Sun L-L, Liu T-J, Li L, Tang W, Zou J-J, Chen X-F, Shi Y-Q (2017) Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces β-cell proliferation in diabetic mice. Int J Mol Med 39(4):936–948.  https://doi.org/10.3892/ijmm.2017.2914 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Tanaka Y (2015) Human mesenchymal stem cells as a tool for joint repair in rheumatoid arthritis. Clin Exp Rheumatol 33(4 Suppl 92):S58–S62 ISSN: 0392-856XPubMedGoogle Scholar
  109. 109.
    Tang AP, Li C, Chen ZH, Li T (2017) Anti-CD20 monoclonal antibody combined with adenovirus vector-mediated IL-10 regulates spleen CD4+/CD8+ T cells and T-bet/GATA-(3) expression in NOD mice. Mol Med Rep 16(4):3974–3982.  https://doi.org/10.3892/mmr.2017.7111 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Tarcha PJ (1990) Polymers for controlled drug delivery. Taylor & Francis, London ISBN 9780849356520Google Scholar
  111. 111.
    Tekie FS, Kiani M, Zakerian A, Pilevarian F, Assali A, Soleimani M, Atyabi F (2017) Nano polyelectrolyte complexes of carboxymethyl dextran and chitosan to improve chitosan-mediated delivery of miR-145. Carbohydr Polym 159:66–75.  https://doi.org/10.1016/j.carbpol.2016.11.067. CrossRefPubMedGoogle Scholar
  112. 112.
    Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, Chapter 3. Unit 3.22.  https://doi.org/10.1002/0471143030.cb0322s30 CrossRefGoogle Scholar
  113. 113.
    Tiegs SL, Russell DM, Nemazee D (2011) Receptor editing in self-reactive bone marrow B cells. J Immunol 186(3):1313–1324 ISSN: 0022-1767PubMedPubMedCentralGoogle Scholar
  114. 114.
    Treacy O, Ryan AE, Heinzl T, O’Flynn L, Cregg M, Wilk M, Ritter T (2012) Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One 7(8):e42662.  https://doi.org/10.1371/journal.pone.0042662 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Urbinati F, Wherley J, Geiger S, Fernandez BC, Kaufman ML, Cooper A, Kohn DB (2017) Preclinical studies for a phase 1 clinical trial of autologous hematopoietic stem cell gene therapy for sickle cell disease. Cytotherapy 19(9):1096–1112.  https://doi.org/10.1016/j.jcyt.2017.06.002 CrossRefPubMedGoogle Scholar
  116. 116.
    Velema J, Kaplan D (2006) Biopolymer-Based Biomaterials as Scaffolds for Tissue Engineering. In: Lee K, Kaplan D (eds) Tissue engineering I. Springer, Berlin/Heidelberg, pp 187–238. Adv Biochem Engin/Biotechnol 102: 187–238.  https://doi.org/10.1007/10_013
  117. 117.
    Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 64(12):1292–1309.  https://doi.org/10.1016/j.addr.2012.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Wardemann H, Nussenzweig MC (2007) B-cell self-tolerance in humans advances in immunology, vol 95. Academic Press, San Diego, pp 83–110.  https://doi.org/10.1016/S0065-2776(07)95003-8 CrossRefGoogle Scholar
  119. 119.
    Wardwell PR, Forstner MB, Bader RA (2015) Investigation of the cytokine response to NF-kappa B decoy oligonucleotide coated polysaccharide based nanoparticles in rheumatoid arthritis in vitro models. Arthritis Res Ther 17:10.  https://doi.org/10.1186/s13075-015-0824-x CrossRefGoogle Scholar
  120. 120.
    Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174(6):1477–1482.  https://doi.org/10.1084/jem.174.6.1477 CrossRefGoogle Scholar
  121. 121.
    Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mager I, Andaloussi SE (2015) Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 4:26316.  https://doi.org/10.3402/jev.v4.26316 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wu XY (2016) Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin Drug Deliv 13(5):609–612.  https://doi.org/10.1517/17425247.2016.1165662 CrossRefPubMedGoogle Scholar
  123. 123.
    Xu J, Zhu MY, Lu YH, Lu Y, Wang ZW (2007) Treatment of type 1 diabetes by transplantation of bone-derived mesenchymal stem cells expressing human insulin gene: experiment with mice. Zhonghua Yi Xue Za Zhi 87(36):2557–2560 ISSN: 0376-2491PubMedGoogle Scholar
  124. 124.
    Yuasa K, Yoshimura M, Urasawa N, Ohshima S, Howell JM, Nakamura A, Takeda S (2007) Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther 14(17):1249–1260.  https://doi.org/10.1038/sj.gt.3302984 CrossRefPubMedGoogle Scholar
  125. 125.
    Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172(3):962–974.  https://doi.org/10.1016/j.jconrel.2013.09.015 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Zhuang X, Xiang X, Grizzl W, Sun D, Zhang S, Axtell RC, Zhang H-G (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779.  https://doi.org/10.1038/mt.2011.164 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Helena Ferreira
    • 1
    • 2
  • Joana F. Fangueiro
    • 1
    • 2
  • Nuno M. Neves
    • 1
    • 2
    • 3
  1. 1.3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineGuimarãesPortugal
  2. 2.ICVS/3B’s – PT Government Associate LaboratoryBragaPortugal
  3. 3.The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho, Avepark 4805-017 BarcoGuimarãesPortugal

Personalised recommendations