Advertisement

Silk Fibroin-Based Scaffold for Bone Tissue Engineering

  • Joo Hee Choi
  • Do Kyung Kim
  • Jeong Eun Song
  • Joaquim Miguel Oliveira
  • Rui Luis Reis
  • Gilson KhangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)

Abstract

Regeneration of diseased or damaged skeletal tissues is one of the challenge that needs to be solved. Although there have been many bone tissue engineering developed, scaffold-based tissue engineering complement the conventional treatment for large bone by completing biological and functional environment. Among many materials, silk fibroin (SF) is one of the favorable material for applications in bone tissue engineering scaffolding. SF is a fibrous protein mainly extracted from Bombyx mori. and spiders. SF has been used as a biomaterial for bone graft by its unique mechanical properties, controllable biodegradation rate and high biocompatibility. Moreover, SF can be processed using conventional and advanced biofabrication methods to form various scaffold types such as sponges, mats, hydrogels and films. This review discusses about recent application and advancement of SF as a biomaterial.

Keywords

Silk fibroin Biomaterial Bone tissue engineering Bone regeneration Tissue engineering Scaffold 

Abbreviations

ALP

Alkaline phosphatase

ASCs

Adipose-derived stem cells

BK

Broussonetia kazinoki

BMSCs

Bone marrow derived mesenchymal stem cells

BMP-2

Bone morphogenic protein-2

DBM

Demineralized bone matrix

3D

3 dimensional

ECM

Extracellular matrix

FDA

Food and Drug Administration

HFIP

Hexafluoro-2-propanol

hMSCs

Human mesenchymal stem cells

HAp

Hydroxyapatite

MSCs

Mesenchymal stem cells

micro-CT

Micro computed tomography

PLGA

Poly(lactide-co-glycolide)

PCL

Polycarprolactam

PGA

Polyglycolide

PEG

Polyethylene glycole

PLA

Polylactide

SF

Silk fibroin

TCP

Tricalcium phosphate

TE

Tissue Engineering

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B3010270) and Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health &Welfare, South Korea (HI15C2996).

References

  1. 1.
    Adachi T, Osako T, Tanaka M, Hojo M, Hollister SJ (2006) Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials 27(21):3964–3972PubMedCrossRefGoogle Scholar
  2. 2.
    Aiba SI, Higuchi M, Gotoh Y, Tsukada M, Imai Y (1995) Attachment and growth of fibroblast cells on silk fibroin. Biochem Biophys Res Commun 208(2):511–516PubMedCrossRefGoogle Scholar
  3. 3.
    Amin YS, Van DSJ, Chai YC, Wauthle R, Tahmasebi BZ, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AA (2014) Bone regeneration performance of surface-treated porous titanium. Biomaterials 35(24):6172–6181CrossRefGoogle Scholar
  4. 4.
    Amini AR, Cato TL, Syam PN (2012) Bone tissue engineering: recent advances and challenges. Critical reviews™ in biomedical engineering 40(5):363–408CrossRefGoogle Scholar
  5. 5.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Aramwit P, Sorada K, Wanchai DE, Teerapol S (2009) Monitoring of inflammatorymediators induced by Silk sericin. J Biosci Bioeng 107(5):556–561PubMedCrossRefGoogle Scholar
  7. 7.
    Bhardwaj N, Sagar C, Subhas CK (2011) Freeze-gelled silk ibroin protein scaffolds for potential applications in soft tissue engineering. Int J Biol Macromol 49(3):260–267PubMedCrossRefGoogle Scholar
  8. 8.
    Bhattacharjee P, Kundu B, Naskar D, Kim HW, Maiti TK, Bhattacharya D, Kundu SC (2017) Silk scaffolds in bone tissue engineering: an overview. Acta Biomater 63:1–17PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Calderón-Colón X, Xia Z, Breidenich JL, Mulreany DG, Guo Q, Uy OM, Tiffany JE, Freund DE, McCally RL, Schein OD, Elisseeff JH, Trexler MM (2012) Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials 33(33):8286–8295PubMedCrossRefGoogle Scholar
  10. 10.
    Cao Y, Wang B (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10(4):1514–1524PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cha JG, Cha SR, Lee DH, Shin JH, Song JE, Suh DS, Park CH, Khang G (2016) mEvaluation of osteogenesis on duck’s feet derived collagen and demineralized bone particles sponges. Polymer (Korea) 40(6):858–864CrossRefGoogle Scholar
  12. 12.
    Cha SR, Jang NK, Kuk H, Kim EY, Song JE, Park CH, Khang G (2014) Inflammatory response effect of duck S feet derived collagen scaffolds for bone tissue engineering. Orig Artic 5(3):84–89Google Scholar
  13. 13.
    Chen F, David P, Fritz V (2012) Silk cocoon (Bombyx Mori): multi-layer structure and mechanical properties. Acta Biomater 8(7):2620–2627PubMedCrossRefGoogle Scholar
  14. 14.
    Chia HN, Benjamin MW (2015) Recent advances in 3D printing of biomaterials. J Biol Eng 9(1):1–14CrossRefGoogle Scholar
  15. 15.
    Chirila TV, Shuko S, Laura JB, Nigel LB, Damien GH (2013) Evaluation of silk sericin as a biomaterial: in vitro growth of human corneal limbal epithelial cells on bombyx mori sericin membranes. Prog Biomater 2(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Compan AM, Kyle C, Yong H (2017) Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng 3(8):1519–1526CrossRefGoogle Scholar
  17. 17.
    Correia C, Bhumiratana S, Yan L, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8(7):2483–2492PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Costa JB, Silva CJ, Oliveira JM, Reis RL (2017) Fast setting silk fibroin bioink for bioprinting of patient-specific memory-shape implants. Adv Healthc Mater 6(22)Google Scholar
  19. 19.
    Dalby MJM, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, Wilkinson CD, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(5):407–413Google Scholar
  20. 20.
    Dalton PD, Tim W (2008) Polymeric scaffolds for bone tissue engineering. Bone 32(3):2004–2005Google Scholar
  21. 21.
    Dimitriou R, Elena J, Dennis M, Peter VG (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Elliott NT, Fan Y (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100(1):59–74PubMedCrossRefGoogle Scholar
  23. 23.
    Engler AJ, Shamik S, Sweeney HL, Dennis ED (2006) Matrix elasticity directs stem cell Lineage specification. Cell 126(4):677–689CrossRefGoogle Scholar
  24. 24.
    Eun JJ, Kim HM, Kim H, Jeon DY, Park CH (2014) Inflammatory responses to hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds with variation of compositions. Polymer Korea 38(2):156–163CrossRefGoogle Scholar
  25. 25.
    Fan H, Haifeng L, Yue W, Siew LT, James CHG (2008) Development of a silk cable-reinforced gelatin/silk fibroin hybrid scaffold for ligament tissue engineering. Cell Transplant 17(12):1389–1401PubMedCrossRefGoogle Scholar
  26. 26.
    Farokhi M, Mottaghitalab F, Samani S, Shokrgozar MA, Kundu SC, Reis RL Fatahi Y, Kaplan DL (2017) Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol adv 36(1):68–91PubMedCrossRefGoogle Scholar
  27. 27.
    Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836CrossRefGoogle Scholar
  28. 28.
    Griffith LG, Melody AS (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224PubMedCrossRefGoogle Scholar
  29. 29.
    Han KS, Song JE, Tripathy N, Kim H, Moon BM, Park CH, Khang G (2015) Effect of pore sizes of silk scaffolds for cartilage tissue engineering. Macromol Res 23(12):1091–1097CrossRefGoogle Scholar
  30. 30.
    Hardy JG, Thomas RS (2010) Composite materials based on silk proteins. Prog Polym Sci (Oxford) 35(9):1093–1115CrossRefGoogle Scholar
  31. 31.
    Hofmann S, Hilbe M, Fajardo RJ, Hagenmüller H, Nuss K, Arras M, Müller R, Von RB, Kaplan DL, Merkle HP, Meinel L (2013) Remodeling of tissue-engineered bone structures in vivo. Eur J Pharm Biopharm 85(1):119–129PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hollander DH (1994) Interstitial cystitis and silk allergy. Med Hypotheses 43(3):155–156PubMedCrossRefGoogle Scholar
  33. 33.
    Huang YC, Darnell K, Kevin GR, Paul HK, David JM (2005) Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J Bone Min Res 20(5):848–857CrossRefGoogle Scholar
  34. 34.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543CrossRefGoogle Scholar
  35. 35.
    Ikeda R, Fujioka H, Nagura I, Kokubu T, Toyokawa N, Inui A, Makino T, Kaneko H, Doita M, Kurosaka M (2009) The effect of porosity and mechanical property of a Synthetic polymer scaffold on repair of osteochondral defects. Int Orthop 33(3):821–828PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL Zhang Z (2009) Mandibular repair in rats with premineralized silk scaffolds and BMP-2-Modified bMSCs. Biomaterials 30(27):4522–4532PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Jin HJ, Park J, Karageorgiou V, Kim JJ, Valluzzi R, Cebe P, Kaplan DL (2005) Water- stable silk films with reduced β-Sheet content. Adv Funct Mater 15(8):1241–1247CrossRefGoogle Scholar
  38. 38.
    Jithendra P, Abraham MR, Thambiran K, Asit BM, Chellan R (2013) Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications. ACS Appl Mater Interfaces 5(15):7291–7298PubMedCrossRefGoogle Scholar
  39. 39.
    Joly P, Duda GN, Schöne M, Welzel PB, Freudenberg U, Werner C, Petersen A (2013) Geometry-driven cell organization determines tissue growths in scaffold pores: consequences for fibronectin organization. PLoS One 8(9):e73545PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kapoor S, Subhas CK (2016) Silk protein-based hydrogels: promising advanced materials for biomedical applications. Acta Biomater 31:17–32PubMedCrossRefGoogle Scholar
  41. 41.
    Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Park YH (2008) Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett 30(3):405–410PubMedCrossRefGoogle Scholar
  42. 42.
    Kim DK, Kim JI, Sim BR, Khang G (2017) Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C 78:571–578CrossRefGoogle Scholar
  43. 43.
    Kim DK, Kim JI, Hwang TI, Sim BR, Khang G (2016) Bioengineered osteoinductive broussonetia kazinoki/ silk fibroin composite scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces Acsami 9(2):1384–1394CrossRefGoogle Scholar
  44. 44.
    Kim H, Che L, Ha Y, Ryu W (2014) Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater Sci Eng C 40:324–335CrossRefGoogle Scholar
  45. 45.
    Kim JI, Hwang TI, Ludwig EA, Park CH, Kim CS (2016) A controlled design of aligned and random nanofibers for 3D bi-functionalized Nerve conduits fabricated via a novel electrospinning set-up. Sci Rep 6:23761PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Koh LD, Cheng Y, Teng CP, Khin YW, Loh XJ, Tee SY, Low M, Ye E, Yu HD, Zhang YW, Han MY (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110CrossRefGoogle Scholar
  48. 48.
    Kook YJ, Lee DH, Song JE, Tripathy N, Jeon YS, Jeon HY, Oliveira JM, Reis RL, Khang G (2017) Osteogenesis evaluation of duck’s feet derived collagen/hydroxyapatite sponges immersed in dexamethasone. Biomater Res 21(1):1–7CrossRefGoogle Scholar
  49. 49.
    Kuk H, Kim HM, Kim SM, Kim EY, Song JE, Kwon SY, Suh DS, Park CH, Khang G (2015) Osteogenic effect of hybrid scaffolds composed of duck feet collagen and PLGA. Polymer (Korea) 39(6):846–851CrossRefGoogle Scholar
  50. 50.
    Kundu B, Rangam R, Subhas CK, Xungai W (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470CrossRefGoogle Scholar
  51. 51.
    Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G (2017) Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Int J Biol Macromol 95:14–23PubMedCrossRefGoogle Scholar
  52. 52.
    Li C, vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124CrossRefGoogle Scholar
  53. 53.
    Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2014) Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2(42):7272–7306CrossRefGoogle Scholar
  54. 54.
    Lin CY, Noboru K, Scott JH (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37(5):623–636PubMedCrossRefGoogle Scholar
  55. 55.
    Liu H, Fan H, Wong EJW, Toh SL, Goh JCH (2008) Silk-based scaffold for ligament tissue engineering. IFMBE Proc 20:34–37 IFMBECrossRefGoogle Scholar
  56. 56.
    Liu J, David GK (2014) Mechanism of guided bone regeneration : a review. Open Dent J 8:56–65PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liu L, Ratner BD, Sage EH, Jiang S (2007) Endothelial cell migration on surface- density gradients of fibronectin, VEGF, or both proteins. Langmuir 23(22):11168–11173PubMedCrossRefGoogle Scholar
  58. 58.
    Lu Q, Huang Y, Li M, Zuo B, Lu S, Wang J, Zhu H, Kaplan DL (2011) Silk fibroin electrogelation mechanisms. Acta Biomater 7(6):2394–2400PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lu Q, Hu X, Wang X, Klug JA, Lu S, Cebe P, Kaplan DL (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6(4):1380–1387PubMedCrossRefGoogle Scholar
  60. 60.
    Makaya K, Terada S, Ohgo K, Asakura T (2009) Comparative study of silk fibroin porous scaffolds derived from salt/water and sucrose/hexafluoroisopropanol in cartilage formation. J Biosci Bioeng 108(1):68–75PubMedCrossRefGoogle Scholar
  61. 61.
    McMurray RJ, Wann AKT, Thompson CL, Connelly JT, Knight MM (2013) Surface topography regulates wnt signaling through control of primary cilia structure in mesenchymal stem cells. Sci Rep 3:3545PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39(4):922–931PubMedCrossRefGoogle Scholar
  63. 63.
    Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26(2):147–155PubMedCrossRefGoogle Scholar
  64. 64.
    Melke J, Swati M, Sourabh G, Keita I, Sandra H (2016) Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater 31:1–16PubMedCrossRefGoogle Scholar
  65. 65.
    Meng W, Kim SY, Yuan J, Kim JC, Kwon OH, Kawazoe N, Chen G, Ito Y, Kang IK (2007) Electrospun PHBV/collagen composite nanofibrous scaffolds for tissue engineering. J Biomater Sci Polym Ed 18(1):81–94PubMedCrossRefGoogle Scholar
  66. 66.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Minoura N, Mohammadi M, Shaegh SA, Alibolandi M, Ebrahimzadeh MH, Tamayol A, Jafari MR, Ramezani M (2018) Micro and Nanotechnologies for Bone Regeneration: recent advances and emerging designs. J Control 274(January):35–55Google Scholar
  68. 68.
    Murphy CM, Matthew GH (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen glycosaminoglycan scaffolds for tissue engineering. Biomaterials 31(3):461–466CrossRefGoogle Scholar
  69. 69.
    Nazarov R, Jin HJ, David LK (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5(3):718–726PubMedCrossRefGoogle Scholar
  70. 70.
    Numata K, Cebe P, Kaplan DL (2010) Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 31(10):2926–2933PubMedCrossRefGoogle Scholar
  71. 71.
    Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671PubMedCrossRefGoogle Scholar
  72. 72.
    Oliveira AL, Sun L, Kim HJ, Hu X, Rice W, Kluge J, Reis RL, Kaplan DL (2012) Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 8(4):1530–1542PubMedCrossRefGoogle Scholar
  73. 73.
    Padol AR, Jayakumar K, Mohan K, Manochaya S (2012) Natural biomaterial silk and silk proteins : applications in tissue repair. Int J Mater Biomater Appl 2(4):19–24Google Scholar
  74. 74.
    Panda N, Bissoyi A, Pramanik K (2014) Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. J Biomater Sci Polym Ed 25(13):1440–1457PubMedCrossRefGoogle Scholar
  75. 75.
    Pérez RJ, Elices M, Llorca J, Viney C (2002) Effect of degumming on the tensile properties of silkworm (bombyx mori) silk fiber. J Appl Polym Sci 84(7):1431–1437CrossRefGoogle Scholar
  76. 76.
    Pérez S, María J, Elena R, Miguel L, José LC, Cristina P (2010) Biomaterials for bone regeneration. Medicina Oral, Patologia Oral Y Cirugia Bucal 15(3):e517CrossRefGoogle Scholar
  77. 77.
    Petite H, Viateau V, Bensaïd W, Meunier A, De PC, Bourguignon M, Oudina K, Sedel L, Guillemin G (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963CrossRefGoogle Scholar
  78. 78.
    Pina S, Canadas RF, Jiménez G, Perán M, Marchal JA, Reis RL, Oliveira JM (2017) Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs 205(3-4):150–163CrossRefGoogle Scholar
  79. 79.
    Polo CL, Magda LE, Jaime EV (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56CrossRefGoogle Scholar
  80. 80.
    Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 117:105–115PubMedCrossRefGoogle Scholar
  81. 81.
    Samal SK, David LK, Emo C (2013) Ultrasound sonication effects on silk fibroin protein. Macromol Mater Eng 298(11):1201–1208CrossRefGoogle Scholar
  82. 82.
    Santin M, Antonella M, Giuliano F, Mario C (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46(3):382–389PubMedCrossRefGoogle Scholar
  83. 83.
    Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3D spider silk constructs. Angew Chem Int Ed 54(9):2816–2820CrossRefGoogle Scholar
  84. 84.
    Serra E, Eva D, Isabel D, Rosa MB (2010) A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization. Microporous Mesoporous Mater 132(3):487–493CrossRefGoogle Scholar
  85. 85.
    Shanmugavel S, Reddy VJ, Ramakrishna S, Lakshmi BS, Dev VG (2014) Aloe vera/silk fibroin/hydroxyapatite incorporated electrospun nanofibrous scaffold for enhanced osteogenesis. J Biomater Tissue Eng 4(1):9–19CrossRefGoogle Scholar
  86. 86.
    She Z, Jin C, Huang Z, Zhang B, Feng Q, Xu Y (2008) Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci: Mater Med 19(12):3545–3553Google Scholar
  87. 87.
    Shen W, Chen X, Hu Y, Yin Z, Zhu T, Hu J, Chen J, Zheng Z, Zhang W, Ran J, Heng BC, Ji J, Chen W, Ouyang HW (2014) Long-term effects of knitted silk-collagen sponge scaffold on anterior cruciate ligament reconstruction and osteoarthritis prevention. Biomaterials 35(28):8154–8163PubMedCrossRefGoogle Scholar
  88. 88.
    Shin JH, Lee DH, Song JE, Cho SJ, Park CH, Khang G (2017) Effect of silk sponge concentrations on skin regeneration. Polymer (Korea) 41(1):1–6CrossRefGoogle Scholar
  89. 89.
    Sim BR, Kim HM, Kim SM, Kim DK, Song JE, Park H, Khang G (2016) Osteogenesis differentiation of rabbit bone marrow-mesenchymal stem cells in silk scaffold loaded with various ratios of hydroxyapatite. Polymer (Korea) 40(6):915–924CrossRefGoogle Scholar
  90. 90.
    Sommer MR, Manuel S, Davide C, André RS (2016) 3D printing of hierarchical silk fibroin structures. ACS Appl Mater Interfaces 8(50):34677–34685PubMedCrossRefGoogle Scholar
  91. 91.
    Song JE, Tripathy N, Shin JH, Lee DH, Cha JG, Park CH, Suh DS, Khang G (2017) In vivo bone regeneration evaluation of duck’s feet collagen/PLGA scaffolds in rat calvarial defect. Macromol Res 25(10):994–999CrossRefGoogle Scholar
  92. 92.
    Soong HK, Kenneth RK (1984) Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91(5):479–483PubMedCrossRefGoogle Scholar
  93. 93.
    Stevens B, Yanzhe Y, Arunesh M, Brent S, Kytai TN (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res – Part B Appl Biomater 85(2):573–582PubMedCrossRefGoogle Scholar
  94. 94.
    Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25CrossRefGoogle Scholar
  95. 95.
    Sutherland TD, James HY, Sarah W, Cheryl YH, David JM (2010) Insect silk: one name, many materials. Ann Rev Entomol 55(1):171–188CrossRefGoogle Scholar
  96. 96.
    Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639PubMedCrossRefGoogle Scholar
  97. 97.
    Talukdar S, Nguyen QT, Chen AC, Sah RL (2011) Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Biomaterials 32(34):8927–8937PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tamada Y (2005) New process to form a silk fibroin porous 3-D structure. Biomacromolecules 6(6):3100–3106PubMedCrossRefGoogle Scholar
  99. 99.
    Tan Y, Richards DJ, Trusk TC, Visconti RP, Yost MJ, Kindy MS, Drake CJ, Argraves WS, Markwald RR, Mei Y (2014) 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6(2):024111PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Tian M, Yang Z, Kuwahara K, Nimni ME, Wan C, Han B (2012) Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater 8(2):753–762PubMedCrossRefGoogle Scholar
  101. 101.
    Uebersax L, Apfel T, Nuss KMR, Vogt R, Kim HY, Meinel L, Kaplan DL, Auer JA, Merkle HP, Von RB (2013) Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Eur J Pharm Biopharm 85(1):107–118PubMedCrossRefGoogle Scholar
  102. 102.
    Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmuller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJT, Stamatialis D, Van Blitterswijk CA, De Boer J (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci 108(40):16565–16570PubMedCrossRefGoogle Scholar
  103. 103.
    Vepari C, David LK (2007) Silk as a biomaterial. Prog Polym Sci (Oxford) 32(8–9):991–1007CrossRefGoogle Scholar
  104. 104.
    Wang M, Jin HJ, David LK, Gregory CR (2004) Mechanical properties of electrospun silk fibers. Macromolecules 37(18):6856–6864CrossRefGoogle Scholar
  105. 105.
    Wang X, Jonathan AK, Gary GL, David LK (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29(8):1054–1064CrossRefGoogle Scholar
  106. 106.
    Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim HJ, Kim HS, Kirker HC, Kaplan DL (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24–25):3415–3428PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wang Y, Kim HJ, Gordana VN, David LK (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27(36):6064–6082PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Weir MD, Xu HK (2010) Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair. Acta Biomater 6(10):4118–4126PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wen CM, Ye ST, Zhou LX, Yu Y (1990) Silk-induced asthma in children: a report of 64 cases. Ann Allergy 65(5):375–378PubMedGoogle Scholar
  110. 110.
    Won YW, Amit NP, David AB (2014) Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials 35(21):5627–5635PubMedCrossRefGoogle Scholar
  111. 111.
    Yan LP, Silva CJ, Ribeiro VP, Miranda GV, Correia C, Da SMA, Sousa RA, Reis RM, Oliveira AL, Oliveira JM, Reis RL (2016) Tumor growth suppression induced by biomimetic silk fibroin hydrogels. Sci Rep 6:31037PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yan LP, Oliveira JM, Oliveira AL, Reis RL (2017) Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. J tissue eng regen med 11(11):3168–3177PubMedCrossRefGoogle Scholar
  113. 113.
    Yao D, Sen D, Lu Q, Hu X, Kaplan DL, Zhang B, Zhu H (2012) Salt-leached silk scaffolds with tunable mechanical properties. Biomacromolecules 13(11):3723–3729PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Yucel T, Peggy C, David LK (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97(7):2044–2050PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Yucel T, Nikola K, Gary GL, Tim JL, David LK (2010) Non-equilibrium silk fibroin adhesives. J Struct Biol 170(2):406–412PubMedCrossRefGoogle Scholar
  116. 116.
    Zadpoor AA (2015) Bone Tissue Regeneration: the role of scaffold geometry. Biomater Sci 3(2):231–245PubMedCrossRefGoogle Scholar
  117. 117.
    Zaoming W, Rosa C, Enrique FC, Richard FL (1996) Partial characterization of the silk allergens in mulberry silk extract. J Investig Allergol Clin Immunol 6(4):237–241PubMedGoogle Scholar
  118. 118.
    Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, Xu G, Heng BC, Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046–6057PubMedCrossRefGoogle Scholar
  119. 119.
    Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL, Jiang X (2011) The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Zhang Y, Fan W, Ma Z, Wu C, Fang W, Liu G, Xiao Y (2010) The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7. Acta Biomater 6(8):3021–3028PubMedCrossRefGoogle Scholar
  121. 121.
    Zhao J, Zhang Z, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Jiang X (2009) Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Bone 45(3):517–527PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Joo Hee Choi
    • 1
  • Do Kyung Kim
    • 1
  • Jeong Eun Song
    • 1
  • Joaquim Miguel Oliveira
    • 2
    • 3
    • 4
  • Rui Luis Reis
    • 2
    • 3
    • 4
  • Gilson Khang
    • 1
    Email author
  1. 1.Department of BIN Convergence TechnologyChonbuk National UniversityJeonju-siSouth Korea
  2. 2.Department of PolymerNano Science & Technology and Polymer Fusion Research CenterChonbuk National UniversityJeonju-siSouth Korea
  3. 3.ICVS/3B’s – PT Government Associated LaboratoryBraga/GuimarãesPortugal
  4. 4.The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of Minho, AveparkGuimarãesPortugal

Personalised recommendations