Clinical Applications of Injectable Biomaterials

  • Hatice Ercan
  • Serap Durkut
  • Aysel Koc-Demir
  • Ayşe Eser Elçin
  • Yaşar Murat Elçin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)


Regenerative medicine is an interdisciplinary field that aims to regenerate the lost or diseased tissues through the combinational use of cells, biomolecules and/or biomaterials. Injectable biomaterials have been comprehensively evaluated for use in this field for their prominent properties, such as ease of handling, providing a better integration of the native tissue by filling irregular defects and having controllable chemical and physical properties. This class of biomaterials can be developed from natural or synthetic origin materials, decellularized matrices or from combinations of materials to form composites. Injectable biomaterials enable minimally invasive approach when compared with traditional open surgeries, which can reduce the cost, and speed up the recovery time for the patients. Cells, growth factors and/or bioactive molecules can be effectively delivered to the target tissue using injectable biomaterials, making them desirable for a number of clinical applications. This chapter gives an overview on injectable biomaterials and their clinical applications in soft, hard, and cardiovascular tissue regeneration.


Injectable biomaterials Stimuli-responsive hydrogels In-situ gelling Clinical applications Tissue engineering Regenerative medicine Scaffolds Biopolymers 


Competing Interests

Y.M.E. is the founder and director of Biovalda, Inc. (Ankara, Turkey). The authors declare no competing interests in relation to this article.


  1. 1.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926. CrossRefGoogle Scholar
  2. 2.
    Elcin YM (2004) Stem cells and tissue engineering. Adv Exp Med Biol 553:301–316. CrossRefPubMedGoogle Scholar
  3. 3.
    Emin N, Elcin AE, Elcin YM (2012) Creation of a tissue development model in an artificial biomimetic niche microenvironment. Abstracts of the 3rd TERMIS world congress 2012. J Tissue Eng Regen Med 6(Suppl 1):198. CrossRefGoogle Scholar
  4. 4.
    Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364. CrossRefPubMedGoogle Scholar
  5. 5.
    Hou Q, Bank PAD, Shakesheff KM (2004) Injectable scaffolds for tissue regeneration. J Mater Chem 14:1915–1923. CrossRefGoogle Scholar
  6. 6.
    Kretlow JD, Young S, Klouda L, Wong M, Mikos AG (2009) Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 21(32–33):3368–3393. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang H, Zhou J, Liu Z, Wang C (2010) Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med 14(5):1044–1055. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Young DA, Christman KL (2012) Injectable biomaterials for adipose tissue engineering. Biomed Mater 7(2):024104. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lewis G (2006) Injectable bone cements for use in vertebroplasty and kyphoplasty: state-of-the-art review. J Biomed Mater Res Part B: Appl Biomater 76B(2):456–468. CrossRefGoogle Scholar
  10. 10.
    Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4–5):263–273. CrossRefPubMedGoogle Scholar
  11. 11.
    Rahman CV, Saeed A, White LJ, Gould TWA, Kirby GTS, Sawkins MJ, Alexander C, Rose FRAJ, Shakesheff KM (2012) Chemistry of polymer and ceramic-based injectable scaffolds and their applications in regenerative medicine. Chem Mater 24(5):781–795. CrossRefGoogle Scholar
  12. 12.
    Kona S, Wadajkar AS, Nguyen KT (2011) Chapter 6 – Tissue engineering applications of injectable biomaterials. In: Injectable biomaterials: science and applications. Woodhead Publishing, pp 142–182. CrossRefGoogle Scholar
  13. 13.
    Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544. CrossRefPubMedGoogle Scholar
  14. 14.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351. CrossRefGoogle Scholar
  15. 15.
    Hong LTA, Kim YM, Park HH et al (2017) An injectable hydrogel enhances tissue repair after spinal cord injury by promoting extracellular matrix remodeling. Nat Commun 8(1):533. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Qiu Y, Hamilton SK, Temenof J (2011) Chapter 4 – Improving mechanical properties of injectable polymers and composites. In: Injectable biomaterials: science and applications. Woodhead Publishing, pp 61–91. CrossRefGoogle Scholar
  17. 17.
    Spector M, Lim TC (2016) Injectable biomaterials: a perspective on the next wave of injectable therapeutics. Biomed Mater 11(1):014110. CrossRefPubMedGoogle Scholar
  18. 18.
    Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, Vacanti CA, Yaremchuk MJ (1996) Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 98(5):843–850. CrossRefPubMedGoogle Scholar
  19. 19.
    Aho AJ, Tirri T, Kukkonen J, Strandberg N, Rich J, Seppälä J, Yli-Urpo A (2004) Injectable bioactive glass/biodegradable polymer composite for bone and cartilage reconstruction: concept and experimental outcome with thermoplastic composites of poly(epsilon-caprolactone-co-D,L-lactide) and bioactive glass S53P4. J Mater Sci Mater Med 15(10):1165–1173. CrossRefPubMedGoogle Scholar
  20. 20.
    Arenas-Arrocena MC, Argueta-Figueroa L, García-Contreras R, Martínez-Arenas O, Camacho-Flores B, Rodriguez-Torres MP, Fuente-Hernández J, Acosta-Torres LS (2017) Chapter 3: New trends for the processing of poly(methyl methacrylate) biomaterial for dental prosthodontics. In: Reddy BSR (ed) Materials science – acrylic polymers in healthcare, CC BY 3.0 license. Google Scholar
  21. 21.
    Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14(11):923–938. CrossRefPubMedGoogle Scholar
  22. 22.
    Vaishya R, Chauhan M, Vaish A (2013) Bone cement. J Clin Orthop Trauma 4(4):157–163. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jaeblon T (2010) Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg 18(5):297–305. CrossRefPubMedGoogle Scholar
  24. 24.
    Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT (2016) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev 107:247–276. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Basu A, Kunduru KR, Doppalapudi S, Domb AJ, Khan W (2016) Poly(lactic acid) based hydrogels. Adv Drug Deliv Rev 107:192–205. CrossRefPubMedGoogle Scholar
  26. 26.
    Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162. CrossRefPubMedGoogle Scholar
  27. 27.
    Jing Y, Quan C, Liu B, Jiang Q, Zhang C (2016) A mini review on the functional biomaterials based on poly(lactic acid) stereocomplex. Polym Rev 56(2):262–286. CrossRefGoogle Scholar
  28. 28.
    Li S, Vert M (2003) Synthesis, characterization, and stereocomplex-induced gelation of block copolymers prepared by ring-opening polymerization of L (D)-lactide in the presence of poly (ethylene glycol). Macromolecules 36:8008–8014. CrossRefGoogle Scholar
  29. 29.
    Shasteen C, Choy YB (2011) Controlling degradation rate of poly(lactic acid) for its biomedical applications. Biomed Eng Lett 1:163–167. CrossRefGoogle Scholar
  30. 30.
    Seker S, Arslan YE, Durkut S, Elçin AE, Elçin YM (2014) Chapter: 14 Nanotechnology for tissue engineering and regenerative medicine. In: Nanopatterning and nanoscale devices for biological applications, pp 339–366Google Scholar
  31. 31.
    Kocak G, Tuncer C, Bütün V (2017) pH-responsive polymers. Polym Chem 8:144–176. CrossRefGoogle Scholar
  32. 32.
    Durkut S, Elçin YM (2017) Synthesis and characterization of thermosensitive poly(N-vinylcaprolactam)-g-collagen. Artif Cell Nanomed B 45(8):1665–1674. CrossRefGoogle Scholar
  33. 33.
    Bearat HH, Vernon BL (2011) Chapter 11 Environmentally responsive injectable materials. In: Injectable biomaterials: science and applications. Woodhead Publishing, pp 263–297. CrossRefGoogle Scholar
  34. 34.
    Lei K, Shen W, Cao L, Yu L, Ding J (2015) An injectable thermogel with high radiopacity. Chem Commun 51:6080–6083. CrossRefGoogle Scholar
  35. 35.
    Liow SS, Dou Q, Kai D, Karim AA, Zhang K, Xu F, Loh XJ (2016) Thermogels: in situ gelling biomaterial. ACS Biomater Sci Eng 2:295–316. CrossRefGoogle Scholar
  36. 36.
    Kim HK, Shim WS, Kim SE, Lee KH, Kang E, Kim JH, Kim K, Kwon IC, Lee DS (2009) Injectable in situ-forming pH/thermo-sensitive hydrogel for bone tissue engineering. Tissue Eng Part A 15(4):923–933. CrossRefPubMedGoogle Scholar
  37. 37.
    Wu J, Zeng F, Huang XP, Chung JC, Konecny F, Weisel RD, Li RK (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586. CrossRefPubMedGoogle Scholar
  38. 38.
    Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF, Oliveira JM, Santos TC, Marques AP, Neves NM, Reis RL (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4(17):999–1030. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22. CrossRefGoogle Scholar
  40. 40.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53. CrossRefPubMedGoogle Scholar
  41. 41.
    Kuo CK, Ma PX (2001) Ionically-crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22(6):511–521. CrossRefPubMedGoogle Scholar
  42. 42.
    Dobratz E, Kim S, Voglewede A, Park SS (2009) Injectable cartilage: using alginate and human chondrocytes. Arch Facial Plast Surg 11(1):40–47. CrossRefPubMedGoogle Scholar
  43. 43.
    Matsuno T, Hashimoto Y, Adachi S, Omata K, Yoshitaka Y, Ozeki Y, Umezu Y, Tabata Y, Nakamura M, Satoh T (2008) Preparation of injectable 3D-formed beta-tricalcium phosphate bead/alginate composite for bone tissue engineering. Dent Mater J 27(6):827–834. CrossRefPubMedGoogle Scholar
  44. 44.
    Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8(6):1009–1016. CrossRefPubMedGoogle Scholar
  45. 45.
    Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598. CrossRefPubMedGoogle Scholar
  46. 46.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34. CrossRefPubMedGoogle Scholar
  47. 47.
    Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11(1–2):130–140. CrossRefPubMedGoogle Scholar
  48. 48.
    Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Effects of chitosan on rat knee cartilages. Biomaterials 20(20):1937–1944. CrossRefPubMedGoogle Scholar
  49. 49.
    Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242(1):27–33. CrossRefPubMedGoogle Scholar
  50. 50.
    Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19(23):2101–2127. CrossRefPubMedGoogle Scholar
  51. 51.
    Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X (2012) Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter 8(12):3280–3294. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Seker S, Lalegul O, Elcin AE, Gurman G, Elcin YM (2012) Regenerative and angiogenic capacity of rat bone marrow MSCs encapsulated in fibrin microbeads in a rat muscle injury model: preliminary study. Abstracts of the 3rd TERMIS world congress 2012. J Tissue Eng Regen Med 6(Suppl 1):158. CrossRefGoogle Scholar
  53. 53.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879. CrossRefGoogle Scholar
  54. 54.
    Zhu SJ, Choi BH, Jung JH, Lee SH, Huh JY, You TM, Lee HJ, Li J (2006) A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(2):175–179. CrossRefPubMedGoogle Scholar
  55. 55.
    Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ (2004) Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10(3–4):403–409. CrossRefPubMedGoogle Scholar
  56. 56.
    Parmaksiz M, Dogan A, Odabas S, Elçin AE, Elçin YM (2016) Clinical applications of decellularized extracellular matrices for tissue engineering and regenerative medicine. Topical review Biomed Mater 11(2):022003. CrossRefGoogle Scholar
  57. 57.
    Parmaksiz M, Elçin AE, Elçin YM (2017) Decellularization of bovine small intestinal submucosa and its use for the healing of a critical-sized full-thickness skin defect, alone and in combination with stem cells, in a small rodent model. J Tissue Eng Regen M 11(6):1754–1765. CrossRefGoogle Scholar
  58. 58.
    Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13. CrossRefPubMedGoogle Scholar
  59. 59.
    Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dogan A, Parmaksiz M, Elcin AE, Elcin YM (2016) Extracellular matrix and regenerative therapies from the cardiac perspective. Stem Cell Rev 12(2):202–213. CrossRefPubMedGoogle Scholar
  61. 61.
    Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48(5):907–913. CrossRefPubMedGoogle Scholar
  62. 62.
    Dogan A, Elcin AE, Elcin YM (2017) Translational applications of tissue engineering in cardiovascular medicine. Curr Pharm Des 23(6):903–914. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL (2009) Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials 30(29):5409–5416. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman KL (2010) Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Pt A 16(6):2017–2027. CrossRefGoogle Scholar
  65. 65.
    Badylak S, Obermiller J, Geddes L, Matheny R (2003) Extracellular matrix for myocardial repair. Heart Surg Forum 6(2):E20–E26. CrossRefPubMedGoogle Scholar
  66. 66.
    Zhao ZQ, Puskas JD, Xu D, Wang NP, Mosunjac M, Guyton RA, Vinten-Johansen J, Matheny R (2010) Improvement in cardiac function with small intestine extracellular matrix is associated with recruitment of C-kit cells, myofibroblasts, and macrophages after myocardial infarction. J Am Coll Cardiol 55(12):1250–1261. CrossRefPubMedGoogle Scholar
  67. 67.
    Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, Wang J, Mayle KM, Bartels K, Salvatore M, Kinsey AM, Demaria AN, Dib N, Christman KL (2012) Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol 59(8):751–763. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    DeQuach JA, Lin JE, Cam C, Hu D, Salvatore MA, Sheikh F, Christman KL (2012) Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cell Mater 23:400–412. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A 109(48):19590–19595. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhang Z (2017) Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opin Biol Ther 17(1):49–62. CrossRefPubMedGoogle Scholar
  71. 71.
    Frey N, Linke A, Süselbeck T, Müller-Ehmsen J, Vermeersch P, Schoors D, Rosenberg M, Bea F, Tuvia S, Leor J (2014) Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study. Circ Cardiovasc Interv 7(6):806–812. CrossRefPubMedGoogle Scholar
  72. 72.
    Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, Hinson A, Gorman JH, Gorman RC, Guccione JM (2013) Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol 168(3):2022–2028. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Anker SD, Coats AJ, Cristian G, Dragomir D, Pusineri E, Piredda M, Bettari L, Dowling R, Volterrani M, Kirwan BA, Filippatos G, Mas JL, Danchin N, Solomon SD, Lee RJ, Ahmann F, Hinson A, Sabbah HN, Mann DL (2015) A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur Heart J 36(34):2297–2309. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zimmermann R, Gabl M, Lutz M, Angermann P, Gschwentner M, Pechlaner S (2003) Injectable calcium phosphate bone cement Norian SRS for the treatment of intra-articular compression fractures of the distal radius in osteoporotic women. Arch Orthop Trauma Surg 123(1):22–27. CrossRefPubMedGoogle Scholar
  75. 75.
    Gómez E, Martín M, Arias J, Carceller F (2005) Clinical applications of Norian SRS (calcium phosphate cement) in craniofacial reconstruction in children: our experience at hospital La Paz since 2001. J Oral Maxillofac Surg 63(1):8–14. CrossRefPubMedGoogle Scholar
  76. 76.
    Sanchez-Sotelo J, Munuera L, Madero R (2000) Treatment of fractures of the distal radius with a remodellable bone cement: a prospective, randomised study using Norian SRS. J Bone Joint Surg Br 82(6):856–863. CrossRefPubMedGoogle Scholar
  77. 77.
    Lobenhoffer P, Gerich T, Witte F, Tscherne H (2002) Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures: a prospective study of twenty-six cases with twenty-month mean follow-up. J Orthop Trauma 16(3):143–149. CrossRefPubMedGoogle Scholar
  78. 78.
    Theiler R, Bruhlmann P (2005) Overall tolerability and analgesic activity of intra-articular sodium hyaluronate in the treatment of knee osteoarthritis. Curr Med Res Opin 21(11):1727–1733. CrossRefPubMedGoogle Scholar
  79. 79.
    Roux C, Fontas E, Breuil V, Brocq O, Albert C, Euller-Ziegler L (2007) Injection of intra-articular sodium hyaluronidate (Sinovial) into the carpometacarpal joint of the thumb (CMC1) in osteoarthritis. A prospective evaluation of efficacy. Joint Bone Spine 74(4):368–372. CrossRefPubMedGoogle Scholar
  80. 80.
    Dickson KF, Friedman J, Buchholz JG, Flandry FD (2002) The use of bonesource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma 53(6):1103–1108. CrossRefPubMedGoogle Scholar
  81. 81.
    Joeris A, Ondrus S, Planka L, Gal P, Slongo T (2010) ChronOS inject in children with benign bone lesions--does it increase the healing rate? Eur J Pediatr Surg 20(1):24–28. CrossRefPubMedGoogle Scholar
  82. 82.
    Arora R, Milz S, Sprecher C, Sitte I, Blauth M, Lutz M (2012) Behaviour of ChronOS™ inject in metaphyseal bone defects of distal radius fractures: tissue reaction after 6-15 months. Injury 43(10):1683–1688. CrossRefPubMedGoogle Scholar
  83. 83.
    Oh CW, Park KC, Jo YH (2017) Evaluating augmentation with calcium phosphate cement (chronOS inject) for bone defects after internal fixation of proximal tibial fractures: a prospective, multicenter, observational study. Orthop Traumatol Surg Res 103(1):105–109. CrossRefPubMedGoogle Scholar
  84. 84.
    Friesenbichler J, Maurer-Ertl W, Bergovec M, Holzer LA, Ogris K, Leitner L, Leithner A (2017) Clinical experience with the artificial bone graft substitute calcibon used following curettage of benign and low-grade malignant bone tumors. Sci Rep 7(1):1736. CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kaczmarczyk J, Sowinski P, Goch M, Katulska K (2015) Complete twelve month bone remodeling with a bi-phasic injectable bone substitute in benign bone tumors: a prospective pilot study. BMC Musculoskelet Disord 16:369. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Johnson LJ, Clayer M (2013) Aqueous calcium sulphate as bone graft for voids following open curettage of bone tumours. ANZ J Surg 83(7–8):564–570. CrossRefPubMedGoogle Scholar
  87. 87.
    Clayer M (2008) Injectable form of calcium sulphate as treatment of aneurysmal bone cysts. ANZ J Surg 78(5):366–370. CrossRefPubMedGoogle Scholar
  88. 88.
    Boyd D, Towler MR, Wren A, Clarkin OM (2008) Comparison of an experimental bone cement with surgical simplex P, Spineplex and Cortoss. J Mater Sci Mater Med 19(4):1745–1752. CrossRefPubMedGoogle Scholar
  89. 89.
    Bae H, Hatten HP Jr, Linovitz R, Tahernia AD, Schaufele MK, McCollom V, Gilula L, Maurer P, Benyamin R, Mathis JM, Persenaire M (2012) A prospective randomized FDA-IDE trial comparing cortoss with PMMA for vertebroplasty: a comparative effectiveness research study with 24-month follow-up. Spine (Phila Pa 1976) 37(7):544–550. CrossRefGoogle Scholar
  90. 90.
    Bae H, Shen M, Maurer P, Peppelman W, Beutler W, Linovitz R, Westerlund E, Peppers T, Lieberman I, Kim C, Girardi F (2010) Clinical experience using cortoss for treating vertebral compression fractures with vertebroplasty and kyphoplasty: twenty four-month follow-up. Spine (Phila Pa 1976) 35(20):E1030–E1036. CrossRefGoogle Scholar
  91. 91.
    Jacobson RE, Granville M, Hatgis J, Berti A (2017) Low volume vertebral augmentation with Cortoss® cement for treatment of high degree vertebral compression fractures and vertebra plana. Cureus 9(2):e1058. CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE (1997) Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 18(10):1897–1904 9403451PubMedGoogle Scholar
  93. 93.
    Allegretti L, Mavilio N, Fiaschi P, Bragazzi R, Pacetti M, Castelletti L, Saitta L, Castellan L (2014) Intra-operative vertebroplasty combined with posterior cord decompression-a report of twelve cases. Interv Neuroradiol 20(5):583–590. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Jupiter JB, Winters S, Sigman S, Lowe C, Pappas C, Ladd AL, Van Wagoner M, Smith ST (1997) Repair of five distal radius fractures with an investigational cancellous bone cement: a preliminary report. J Orthop Trauma 11(2):110–116. CrossRefPubMedGoogle Scholar
  95. 95.
    Wolff KD, Swaid S, Nolte D, Böckmann RA, Hölzle F, Müller-Mai C (2004) Degradable injectable bone cement in maxillofacial surgery: indications and clinical experience in 27 patients. J Craniomaxillofac Surg 32(2):71–79. CrossRefPubMedGoogle Scholar
  96. 96.
    Evanich JD, Evanich CJ, Wright MB, Rydlewicz JA (2001) Efficacy of intraarticular hyaluronic acid injections in knee osteoarthritis. Clin Orthop Relat Res 390:173–181 PMID: 11550864 CrossRefGoogle Scholar
  97. 97.
    Cheng OT, Souzdalnitski D, Vrooman B, Cheng J (2012) Evidence-based knee injections for the management of arthritis. Pain Med 13(6):740–753. CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ong KL, Anderson AF, Niazi F, Fierlinger AL, Kurtz SM, Altman RD (2016) Hyaluronic acid injections in medicare knee osteoarthritis patients are associated with longer time to knee arthroplasty. J Arthroplast 31(8):1667–1673. CrossRefGoogle Scholar
  99. 99.
    Marcia S, Boi C, Dragani M, Marini S, Marras M, Piras E, Anselmetti GC, Masala S (2012) Effectiveness of a bone substitute (CERAMENT™) as an alternative to PMMA in percutaneous vertebroplasty: 1-year follow-up on clinical outcome. Eur Spine J 21(Suppl 1):S112–S118. CrossRefPubMedGoogle Scholar
  100. 100.
    Kon E, Buda R, Filardo G, Di Martino A, Timoncini A, Cenacchi A, Fornasari PM, Giannini S, Marcacci M (2010) Platelet-rich plasma: intra-articular knee injections produced favorable results on degenerative cartilage lesions. Knee Surg Sports Traumatol Arthrosc 18(4):472–479. CrossRefPubMedGoogle Scholar
  101. 101.
    Johl SS, Burgett RA (2006) Dermal filler agents: a practical review. Curr Opin Ophthalmol 17(5):471–479. CrossRefPubMedGoogle Scholar
  102. 102.
    Rees TD, Ashley FL, Delgado JP (1973) Silicone fluid injections for facial atrophy: a ten-year study. Plast Reconstr Surg 52(2):118–127 4578999CrossRefGoogle Scholar
  103. 103.
    Jones DH, Carruthers A, Orentreich D, Brody HJ, Lai MY, Azen S, Van Dyke GS (2004) Highly purified 1000-cSt silicone oil for treatment of human immunodeficiency virus-associated facial lipoatrophy: an open pilot trial. Dermatol Surg 30(10):1279–1286. CrossRefPubMedGoogle Scholar
  104. 104.
    Chen F, Carruthers A, Humphrey S, Carruthers J (2013) HIV-associated facial lipoatrophy treated with injectable silicone oil: a pilot study. J Am Acad Dermatol 69(3):431–437. CrossRefPubMedGoogle Scholar
  105. 105.
    Valantin MA, Aubron-Olivier C, Ghosn J, Laglenne E, Pauchard M, Schoen H, Bousquet R, Katz P, Costagliola D, Katlama C (2003) Polylactic acids implants (new-fill) to correct facial lipoatrophy in HIV- infected patients: results of the open-label study VEGA. AIDS 17(17):2471–2477. CrossRefPubMedGoogle Scholar
  106. 106.
    Moyle GJ, Lysakova L, Brown S, Sibtain N, Healy J, Priest C, Mandalia S, Barton SE (2004) A randomized open-label study of immediate versus delayed polylactic acid injections for the cosmetic management of facial lipoatrophy in persons with HIV infection. HIV Med 5(2):82–87. CrossRefPubMedGoogle Scholar
  107. 107.
    Moyle GJ, Brown S, Lysakova L, Barton SE (2006) Long-term safety and efficacy of poly-L-lactic acid in the treatment of HIV-related facial lipoatrophy. HIV Med 7(3):181–185. CrossRefPubMedGoogle Scholar
  108. 108.
    Vleggaar D (2005) Facial volumetric correction with injectable poly-L-lactic acid. Dermatol Surg 31(11 Pt 2):1511–1517. CrossRefPubMedGoogle Scholar
  109. 109.
    Lowe NJ, Maxwell CA, Lowe P, Shah A, Patnaik R (2009) Injectable poly-l-lactic acid: 3 years of aesthetic experience. Dermatol Surg 35(Suppl 1):344–349. CrossRefPubMedGoogle Scholar
  110. 110.
    Loutfy MR, Raboud JM, Antoniou T, Kovacs C, Shen S, Hal- penny R, Ellenor D, Ezekiel D, Zhao A, Beninger F (2007) Immediate versus delayed polyalkylimide gel injections to cor- rect facial lipoatrophy in HIV-positive patients. AIDS 21(9):1147–1155. CrossRefPubMedGoogle Scholar
  111. 111.
    Karim RB, de Lint CA, van Galen SR, van Rozelaar L, Nieuwkerk PT, Askarizadeh E, Hage JJ (2008) Long-term effect of polyalkylimide gel injections on severity of facial lipoatrophy and quality of life of HIV-positive patients. Aesthet Plast Surg 32(6):873–878. CrossRefGoogle Scholar
  112. 112.
    Carruthers A, Carruthers J (2008) Evaluation of injectable calcium hydroxylapatite for the treatment of facial lipoatrophy associated with human immunodeficiency virus. Dermatol Surg 34(11):1486–1499. CrossRefPubMedGoogle Scholar
  113. 113.
    Berlin AL, Hussain M, Goldberg DJ (2008) Calcium hydroxylapatite filler for facial rejuvenation: a histologic and immunohistochemical analysis. Dermatol Surg 34(Suppl 1):S64–S67. CrossRefPubMedGoogle Scholar
  114. 114.
    Narins RS, Brandt F, Leyden J, Lorenc ZP, Rubin M, Smith S (2003) A randomized, double-blind, multicenter comparison of the efficacy and tolerability of restylane versus zyplast for the correction of nasolabial folds. Dermatol Surg 29(6):588–595. CrossRefPubMedGoogle Scholar
  115. 115.
    Carruthers A, Carey W, De Lorenzi C, Remington K, Schachter D, Sapra S (2005) Randomized, double-blind comparison of the efficacy of two hyaluronic acid derivatives, restylane perlane and hylaform, in the treatment of nasolabial folds. Dermatol Surg 31(11 Pt 2):1591–1598. CrossRefPubMedGoogle Scholar
  116. 116.
    Levy PM, De Boulle K, Raspaldo H (2009) A split-face comparison of a new hyaluronic acid facial filler containing pre-incorporated lidocaine versus a standard hyaluronic acid facial filler in the treatment of naso-labial folds. J Cosmet Laser Ther 11(3):169–173. CrossRefPubMedGoogle Scholar
  117. 117.
    Lam SM, Azizzadeh B, Graivier M (2006) Injectable poly-L-lactic acid (Sculptra): technical considerations in soft-tissue contouring. Plast Reconstr Surg 118(3 Suppl):55S–63S. CrossRefPubMedGoogle Scholar
  118. 118.
    Burgess CM, Quiroga RM (2005) Assessment of the safety andefficacy of poly-L-lactic acid for the treatment of HIV-associated facial lipoatrophy. J Am Acad Dermatol 52(2):233–239. CrossRefPubMedGoogle Scholar
  119. 119.
    Duracinsky M, Leclercq P, Herrmann S, Christen MO, Dolivo M, Goujard C, Chassany O (2014) Safety of poly-L-lactic acid (new-fill®) in the treatment of facial lipoatrophy: a large observational study among HIV-positive patients. BMC Infect Dis 1(14):474. CrossRefGoogle Scholar
  120. 120.
    Lahiri A, Waters R (2007) Experience with bio-alcamid, a new soft tissue endoprosthesis. J Plast Reconstr Aesthet Surg 60(6):663–667. CrossRefPubMedGoogle Scholar
  121. 121.
    George DA, Erel E, Waters R (2012) Patient satisfaction following bio-alcamid injection for facial contour defects. J Plast Reconstr Aesthet Surg 65(12):1622–1626. CrossRefPubMedGoogle Scholar
  122. 122.
    Gómez-de la Fuente E, Alvarez-Fernández JG, Pinedo F, Naz E, Gamo R, Vicente-Martín FJ, López-Estebaranz JL (2007) Cutaneous adverse reaction to bio-alcamid® implant. Actas Dermosifiliogr 98(4):271–275. CrossRefPubMedGoogle Scholar
  123. 123.
    Protopapa C, Giuseppe S, Caporale D, Cammarota N (2003) Bio-Alcamid™ in drug-induced lipodystrophy. J Cosmet Laser Ther 5:226–230. CrossRefPubMedGoogle Scholar
  124. 124.
    Solomon P, Sklar M, Zener R (2012) Facial soft tissue augmentation with Artecoll®: a review of eight years of clinical experience in 153 patients. Can J Plast Surg 20(1):28–32 PMID 23598763CrossRefGoogle Scholar
  125. 125.
    Karnik J, Baumann L, Bruce S, Callender V, Cohen S, Grimes P, Joseph J, Shamban A, Spencer J, Tedaldi R, Werschler WP, Smith SR (2014) A double-blind, randomized, multicenter, controlled trial of suspended polymethylmethacrylate microspheres for the correction of atrophic facial acne scars. Am Acad Derm 71(1):77–83. CrossRefGoogle Scholar
  126. 126.
    Cohen SR, Berner CF, Busso M, Gleason MC, Hamilton D, Holmes RE, Romano JJ, Rullan PP, Thaler MP, Ubogy Z, Vecchione TR (2006) ArteFill: a long-lasting injectable wrinkle filler material--summary of the U.S. food and drug administration trials and a progress report on 4- to 5-year outcomes. Plast Reconstr Surg 118(3 Suppl):64S–76S. CrossRefPubMedGoogle Scholar
  127. 127.
    Chen L, Li SR, Yu P, Wang ZX (2014) Comparison of artecoll, restylane and silicone for augmentation rhinoplasty in 378 Chinese patients. Clin Invest Med 37(4):E203–E210. CrossRefPubMedGoogle Scholar
  128. 128.
    Orentreich D, Leone AS (2004) A case of HIV-associated facial lipoatrophy treated with 1000-cs liquid injectable silicone. Dermatol Surg 30(4 Pt 1):548–551. CrossRefPubMedGoogle Scholar
  129. 129.
    Jacinto SS (2005) Ten-year experience using injectable silicone oil for soft tissue augmentation in the Philippines. Dermatol Surg 31:1550–1554. CrossRefPubMedGoogle Scholar
  130. 130.
    Kasbekar AV, Sherman IW (2013) Closure of minor tracheoesophageal fistulae with calcium hydroxlapatite. Auris Nasus Larynx 40(5):491–492. CrossRefPubMedGoogle Scholar
  131. 131.
    Alam M, Havey J, Pace N, Pongprutthipan M, Yoo S (2011) Large-particle calcium hydroxylapatite injection for correction of facial wrinkles and depressions. J Am Acad Dermatol 65(1):92–96. CrossRefPubMedGoogle Scholar
  132. 132.
    Daley T, Damm DD, Haden JA, Kolodychak MT (2012) Oral lesions associated with injected hydroxyapatite cosmetic filler. Oral Surg Oral Med Oral Pathol Oral Radiol 114(1):107–111. CrossRefPubMedGoogle Scholar
  133. 133.
    Smith S, Busso M, McClaren M, Bass LS (2007) A randomized, bilateral, prospective comparison of calcium hydroxylapatite microspheres versus human-based collagen for the correction of nasolabial folds. Dermatol Surg 33(Suppl 2):S112–S121. CrossRefPubMedGoogle Scholar
  134. 134.
    Downie J, Mao Z, Rachel Lo TW, Barry S, Bock M, Siebert JP, Bowman A, Ayoub A (2009) A double-blind, clinical evaluation of facial augmentation treatments: a comparison of PRI 1, PRI 2, Zyplast® and Perlane®. J Plast Reconstr Aesthet Surg 62(12):1636–1643. CrossRefPubMedGoogle Scholar
  135. 135.
    Sclafani AP, Romo T, Jacono AA (2002) Rejuvenation of theaging lip with an injectable acellular dermal graft (Cymetra). Arch Facial Plast Surg 4(4):252–257. CrossRefPubMedGoogle Scholar
  136. 136.
    Lupo MP, Smith SR, Thomas JA, Murphy DK, Beddingfield FC (2008) Effectiveness of Juvéderm ultra plus dermal filler in the treatment of severe nasolabial folds. Plast Reconstr Surg 121(1):289–297. CrossRefPubMedGoogle Scholar
  137. 137.
    Bauman L (2004) CosmoDerm/CosmoPlast (human bioengineered collagen) for the aging face. Facial Plast Surg 20(2):125–128. CrossRefPubMedGoogle Scholar
  138. 138.
    Arsiwala SZ (2010) Safety and persistence of non-animal stabilized hyaluronic acid fillers for nasolabial folds correction in 30 Indian patients. J Cutan Aesthet Surg 3(3):156–161. CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wu Y, Sun N, Xu Y, Liu H, Zhong S, Chen L, Li D (2016) Clinical comparison between two hyaluronic acid-derived fillers in the treatment of nasolabial folds in Chinese subjects: BioHyalux versus Restylane. Arch Dermatol Res 308(3):145–151. CrossRefPubMedGoogle Scholar
  140. 140.
    Kinney BM (2006) Injecting puragen plus into the nasolabial folds: preliminary observations of FDA trial. Aesthet Surg J 26(6):741–748. CrossRefPubMedGoogle Scholar
  141. 141.
    Moers-Carpi M, Vogt S, Santos BM, Planas J, Vallve SR, Howell DJ (2007) A multicenter, randomized trial comparing calcium hydroxylapatite to two hyaluronic acids for treatment of nasolabial folds. Dermatol Surg 33(Suppl 2):S144–S151. CrossRefPubMedGoogle Scholar
  142. 142.
    Grimes PE, Thomas JA, Murphy DK (2009) Safety and effectiveness of hyaluronic acid fillers in skin of color. J Cosmet Dermatol 8(3):162–168. CrossRefPubMedGoogle Scholar
  143. 143.
    Onesti M, Toscani M, Curinga G, Chiummariello S, Scuderi N (2009) Assessment of a new hyaluronic acid filler. Double-blind, randomized, comparative study between Puragen and Captique in the treatment of nasolabial folds. In Vivo 23(3):479–486 19454518PubMedGoogle Scholar
  144. 144.
    Baumann LS, Shamban AT, Lupo MP, Monheit GD, Thomas JA, Murphy DK, Walker PS, JUVEDERM vs. ZYPLAST Nasolabial Fold Study Group (2007) Comparison of smooth-gel hyaluronic acid dermal fillers with cross-linked bovine collagen: a mul- ticenter, double-masked, randomized within-subject study. Dermatol Surg 33(Suppl 2):S128–S135. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Hatice Ercan
    • 1
  • Serap Durkut
    • 1
  • Aysel Koc-Demir
    • 1
  • Ayşe Eser Elçin
    • 1
  • Yaşar Murat Elçin
    • 1
    • 2
  1. 1.Tissue Engineering, Biomaterials and Nanobiotechnology LaboratoryFaculty of Science, Stem Cell Institute, Ankara UniversityAnkaraTurkey
  2. 2.Biovalda Health Technologies, Inc.AnkaraTurkey

Personalised recommendations