Inherited Neurodegenerative Disorders

  • Dulika S. Sumathipala
  • Vajira H. W. Dissanayake


Neurodegeneration is the progressive loss of function of neurons and an inescapable event in incurable diseases involving Huntington Disease (HD), Parkinson Disease (PD), and Alzheimer Disease (AD). These and other such diseases share similar pathogenic mechanisms including atypical protein assembly, oxidative pathway dysfunction, and apoptotic cellular death. Neuronal degeneration may be exhibited at different levels like neuronal circuitry aligning from molecular to systemic levels.

In this chapter, we focus on the inherited neurodegenerative diseases and their molecular pathogenesis. We will be looking into highly researched inherited neurodegenerative diseases including HD, PD, AD, and ALS and review the varied knowledge on inheritance patterns and disease mechanisms that have been documented.


Neurodegeneration Alzheimer Parkinson Huntington Amyotrophic lateral sclerosis Autosomal Mitochondria 


  1. 1.
    Lill CM, Bertram L. Towards unveiling the genetics of neurodegenerative diseases. Semin Neurol. 2011;31(5):531–41.CrossRefGoogle Scholar
  2. 2.
    Roos RA. Huntington’s disease: a clinical review. Orphanet J Rare Dis. 2010;5:40.CrossRefGoogle Scholar
  3. 3.
    Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest. 2005;115(6):1449–57.CrossRefGoogle Scholar
  4. 4.
    Lander ES. The new genomics: global views of biology. Science. 1996;274(5287):536–9.CrossRefGoogle Scholar
  5. 5.
    Petrozzi L, Ricci G, Giglioli NJ, Siciliano G, Mancuso M. Mitochondria and neurodegeneration. Biosci Rep. 2007;27(1-3):87–104.CrossRefGoogle Scholar
  6. 6.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.CrossRefGoogle Scholar
  7. 7.
    Perry G, Nunomura A, Hirai K, Zhu X, Perez M, Avila J, et al. Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Radic Biol Med. 2002;33(11):1475–9.CrossRefGoogle Scholar
  8. 8.
    Kwong JQ, Beal MF, Manfredi G. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem. 2006;97(6):1659–75.CrossRefGoogle Scholar
  9. 9.
    Djousse L, Knowlton B, Hayden MR, Almqvist EW, Brinkman RR, Ross CA, et al. Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Neurogenetics. 2004;5(2):109–14.CrossRefGoogle Scholar
  10. 10.
    Davies SW, Beardsall K, Turmaine M, DiFiglia M, Aronin N, Bates GP. Are neuronal intranuclear inclusions the common neuropathology of triplet-repeat disorders with polyglutamine-repeat expansions? Lancet. 1998;351(9096):131–3.CrossRefGoogle Scholar
  11. 11.
    Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell. 1997;90(3):537–48.CrossRefGoogle Scholar
  12. 12.
    Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.CrossRefGoogle Scholar
  13. 13.
    Trottier Y, Biancalana V, Mandel JL. Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet. 1994;31(5):377–82.CrossRefGoogle Scholar
  14. 14.
    Sumathipala DS, Jayasekara RW, Dissanayake VH. Clinical and genetic features of Huntington disease in Sri Lanka. BMC Neurol. 2013;13:191.CrossRefGoogle Scholar
  15. 15.
    Creighton S, Almqvist EW, MacGregor D, Fernandez B, Hogg H, Beis J, et al. Predictive, pre-natal and diagnostic genetic testing for Huntington’s disease: the experience in Canada from 1987 to 2000. Clin Genet. 2003;63(6):462–75.CrossRefGoogle Scholar
  16. 16.
    Damiano M, Galvan L, Deglon N, Brouillet E. Mitochondria in Huntington’s disease. Biochim Biophys Acta. 2010;1802(1):52–61.CrossRefGoogle Scholar
  17. 17.
    Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology. 1993;43(12):2689–95.CrossRefGoogle Scholar
  18. 18.
    Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol. 1997;41(2):160–5.CrossRefGoogle Scholar
  19. 19.
    Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol. 1997;41(5):646–53.CrossRefGoogle Scholar
  20. 20.
    Seong IS, Ivanova E, Lee JM, Choo YS, Fossale E, Anderson M, et al. HD CAG repeat implicates a dominant property of Huntington in mitochondrial energy metabolism. Hum Mol Genet. 2005;14(19):2871–80.CrossRefGoogle Scholar
  21. 21.
    Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.CrossRefGoogle Scholar
  22. 22.
    Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, et al. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA. 2010;303(18):1832–40.CrossRefGoogle Scholar
  23. 23.
    Goate A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J Alzheimers Dis. 2006;9(Suppl 3):341–7.CrossRefGoogle Scholar
  24. 24.
    Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature. 1995;376(6543):775–8.CrossRefGoogle Scholar
  25. 25.
    Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 2012;78(16):1250–7.CrossRefGoogle Scholar
  26. 26.
    Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet. 1999;65(3):664–70.CrossRefGoogle Scholar
  27. 27.
    Alonso Vilatela ME, Lopez-Lopez M, Yescas-Gomez P. Genetics of Alzheimer’s disease. Arch Med Res. 2012;43(8):622–31.CrossRefGoogle Scholar
  28. 28.
    Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.CrossRefGoogle Scholar
  29. 29.
    Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.CrossRefGoogle Scholar
  30. 30.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.CrossRefGoogle Scholar
  31. 31.
    Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci. 2001;21(9):3017–23.CrossRefGoogle Scholar
  32. 32.
    Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol. 2005;57(5):695–703.CrossRefGoogle Scholar
  33. 33.
    Parker WD Jr, Parks J, Filley CM, Kleinschmidt-DeMasters BK. Electron transport chain defects in Alzheimer’s disease brain. Neurology. 1994;44(6):1090–6.CrossRefGoogle Scholar
  34. 34.
    Kish SJ, Bergeron C, Rajput A, Dozic S, Mastrogiacomo F, Chang LJ, et al. Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem. 1992;59(2):776–9.CrossRefGoogle Scholar
  35. 35.
    Fang F, Kamel F, Sandler DP, Sparen P, Ye W. Maternal age, exposure to siblings, and risk of amyotrophic lateral sclerosis. Am J Epidemiol. 2008;167(11):1281–6.CrossRefGoogle Scholar
  36. 36.
    Tandan R, Bradley WG. Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol. 1985;18(3):271–80.CrossRefGoogle Scholar
  37. 37.
    Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223–6.CrossRefGoogle Scholar
  38. 38.
    Chio A, Traynor BJ, Lombardo F, Fimognari M, Calvo A, Ghiglione P, et al. Prevalence of SOD1 mutations in the Italian ALS population. Neurology. 2008;70(7):533–7.CrossRefGoogle Scholar
  39. 39.
    Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55.CrossRefGoogle Scholar
  40. 40.
    Beleza-Meireles A, Al-Chalabi A. Genetic studies of amyotrophic lateral sclerosis: controversies and perspectives. Amyotroph Lateral Scler. 2009;10(1):1–14.CrossRefGoogle Scholar
  41. 41.
    Fallis BA, Hardiman O. Aggregation of neurodegenerative disease in ALS kindreds. Amyotroph Lateral Scler. 2009;10(2):95–8.CrossRefGoogle Scholar
  42. 42.
    Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol. 2011;7(11):603–15.CrossRefGoogle Scholar
  43. 43.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59–62.CrossRefGoogle Scholar
  44. 44.
    Gurney ME. Transgenic-mouse model of amyotrophic lateral sclerosis. N Engl J Med. 1994;331(25):1721–2.CrossRefGoogle Scholar
  45. 45.
    Kong J, Xu Z. Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1. J Neurosci. 1998;18(9):3241–50.CrossRefGoogle Scholar
  46. 46.
    Higgins CM, Jung C, Xu Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 2003;4:16.CrossRefGoogle Scholar
  47. 47.
    Fahn S. Description of Parkinson’s disease as a clinical syndrome. Ann N Y Acad Sci. 2003;991:1–14.CrossRefGoogle Scholar
  48. 48.
    Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128–39.CrossRefGoogle Scholar
  49. 49.
    de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.CrossRefGoogle Scholar
  50. 50.
    Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18(R1):R48–59.CrossRefGoogle Scholar
  51. 51.
    Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–54.CrossRefGoogle Scholar
  52. 52.
    Shashidharan P, Good PF, Hsu A, Perl DP, Brin MF, Olanow CW. TorsinA accumulation in Lewy bodies in sporadic Parkinson’s disease. Brain Res. 2000;877(2):379–81.CrossRefGoogle Scholar
  53. 53.
    Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, et al. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26(1):41–50.CrossRefGoogle Scholar
  54. 54.
    Walker FO. Huntington’s disease. Semin Neurol. 2007;27(2):143–50.CrossRefGoogle Scholar
  55. 55.
    Thompson JC, Snowden JS, Craufurd D, Neary D. Behavior in Huntington’s disease: dissociating cognition-based and mood-based changes. J Neuropsychiatry Clin Neurosci. 2002;14(1):37–43.CrossRefGoogle Scholar
  56. 56.
    Sumathipala DS, Abeysekera GS, Jayasekara RW, Tallaksen CM, Dissanayake VH. Autosomal dominant hereditary ataxia in Sri Lanka. BMC Neurol. 2013;13:39.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dulika S. Sumathipala
    • 1
  • Vajira H. W. Dissanayake
    • 1
  1. 1.Human Genetics Unit, Faculty of MedicineUniversity of ColomboColomboSri Lanka

Personalised recommendations