Neural Stem Cell-Based Therapeutic Approaches for Brain Repair

  • Cláudia Saraiva
  • Tiago Santos
  • Liliana BernardinoEmail author


In mammals, neural stem cells (NSCs) generate neurons constitutively throughout the adult life and are located mainly in two neurogenic niches, the subventricular zone and the subgranular zone. NSCs are essential for the proper function of the adult brain, and they also account for a promising source of new cells able to counteract brain injuries found in Parkinson’s disease, Alzheimer’s disease, among others. This ability opens avenues for the use of stem cells as promising therapeutic tools for brain pathologies. Here, the basic concepts regarding adult neurogenesis and the composition and regulation of the neurogenic niches will be explored. The role of neurogenesis in Parkinson’s disease (PD) and Alzheimer’s disease (AD) as well as some examples of valuable therapeutic strategies employing stem cells and nanomaterials will also be scrutinized.


Neural stem cells Neurogenesis Brain repair Nanomaterials Parkinson’s disease Alzheimer’s disease 



This work was supported by Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BD/90365/2012), by FEDER funds through the POCI—COMPETE 2020—Operational Programme Competitiveness and Internationalisation in Axis I—Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491), the National Funds by FCT—Foundation for Science and Technology (Project UID/Multi /00709/2013) and ‘‘Programa Operacional do Centro, Centro 2020” through the funding of the ICON project (Interdisciplinary Challenges On Neurodegeneration; CENTRO-01-0145-FEDER-000013)”. The authors declare no conflicts of interest to disclose.


  1. 1.
    Pearson BJ, Doe CQ. Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol. 2004;20:619–47.CrossRefGoogle Scholar
  2. 2.
    Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, Götz M. Neuronal or glial progeny: regional differences in radial glia fate. Neuron. 2003;37:751–64.CrossRefGoogle Scholar
  3. 3.
    Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci. 2002;22:3161–73.CrossRefGoogle Scholar
  4. 4.
    Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–16.CrossRefGoogle Scholar
  5. 5.
    Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004;7:1233–41.CrossRefGoogle Scholar
  6. 6.
    Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80:588–601.CrossRefGoogle Scholar
  7. 7.
    Curtis MA, Penney EB, Pearson AG, van Roon-Mom WMC, Butterworth NJ, Dragunow M, Connor B, Faull RLM. Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci U S A. 2003;100:9023–7.CrossRefGoogle Scholar
  8. 8.
    Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.CrossRefGoogle Scholar
  9. 9.
    Santos T, Boto C, Saraiva CM, Bernardino L, Ferreira L. Nanomedicine approaches to modulate neural stem cells in brain repair. Trends Biotechnol. 2016;34:437–9.CrossRefGoogle Scholar
  10. 10.
    Lledo P-M, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci. 2006;7:179–93.CrossRefGoogle Scholar
  11. 11.
    Silva-Vargas V, Crouch EE, Doetsch F. Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr Opin Neurobiol. 2013;23:935–42.CrossRefGoogle Scholar
  12. 12.
    Curtis MA, Kam M, Faull RL. Neurogenesis in humans. Eur J Neurosci. 2011;33:1170–4.CrossRefGoogle Scholar
  13. 13.
    O’Keeffe GC, Barker RA, Caldwell MA. Dopaminergic modulation of neurogenesis in the subventricular zone of the adult brain. Cell Cycle. 2009;8:2888–94.CrossRefGoogle Scholar
  14. 14.
    Ming G-L, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70:687–702.CrossRefGoogle Scholar
  15. 15.
    Chambers RA, Potenza MN, Hoffman RE, Miranker W. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology. 2004;29:747–58.CrossRefGoogle Scholar
  16. 16.
    Guerrero-Cazares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, Garcia-Verdugo JM, Quinones-Hinojosa A. Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol. 2011;519:1165–80.CrossRefGoogle Scholar
  17. 17.
    Sanai N, Nguyen T, Ihrie RA, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478:382–6.CrossRefGoogle Scholar
  18. 18.
    Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M, Gonzalez-Perez O, Mirzadeh Z, Gil-Perotin S, Romero-Rodriguez R, Berger MS, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006;494:415–34.CrossRefGoogle Scholar
  19. 19.
    Kam M, Curtis MA, McGlashan SR, Connor B, Nannmark U, Faull RLM. The cellular composition and morphological organization of the rostral migratory stream in the adult human brain. J Chem Neuroanat. 2009;37:196–205.CrossRefGoogle Scholar
  20. 20.
    Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007;315:1243–9.CrossRefGoogle Scholar
  21. 21.
    Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.CrossRefGoogle Scholar
  22. 22.
    Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci. 1993;90:2074–7.CrossRefGoogle Scholar
  23. 23.
    Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994;13:1071–82.CrossRefGoogle Scholar
  24. 24.
    Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang L-PP, Yamaguchi M, Kettenmann H, Kempermann G. Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci. 2003;23:373–82.CrossRefGoogle Scholar
  25. 25.
    Bonaguidi MA, Song J, Ming GL, Song H. A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol. 2012;22:754–61.CrossRefGoogle Scholar
  26. 26.
    Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–60.CrossRefGoogle Scholar
  27. 27.
    Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21:7158–60.CrossRefGoogle Scholar
  28. 28.
    Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429:184–7.CrossRefGoogle Scholar
  29. 29.
    Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E. Neurogenesis in the adult is involved in the formation of trace memories. Nature. 2001;410:372–6.CrossRefGoogle Scholar
  30. 30.
    Spalding KLL, Bergmann O, Alkass K, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.CrossRefGoogle Scholar
  31. 31.
    Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.CrossRefGoogle Scholar
  32. 32.
    Damier P. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122:1437–48.CrossRefGoogle Scholar
  33. 33.
    Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci. 2004;7:726–35.CrossRefGoogle Scholar
  34. 34.
    O’Sullivan SS, Johnson M, Williams DR, Revesz T, Holton JL, Lees AJ, Perry EK. The effect of drug treatment on neurogenesis in Parkinson’s disease. Mov Disord. 2011;26:45–50.CrossRefGoogle Scholar
  35. 35.
    Höglinger GU, Arias-Carrión O, Ipach B, Oertel WH. Origin of the dopaminergic innervation of adult neurogenic areas. J Comp Neurol. 2014;522:2336. Scholar
  36. 36.
    Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J-MM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36:1021–34.CrossRefGoogle Scholar
  37. 37.
    O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA. Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A. 2009;106:8754–9.CrossRefGoogle Scholar
  38. 38.
    Iwakura Y, Piao Y-S, Mizuno M, Takei N, Kakita A, Takahashi H, Nawa H. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem. 2005;93:974–83.CrossRefGoogle Scholar
  39. 39.
    Coronas V, Srivastava LK, Liang JJ, Jourdan F, Moyse E. Identification and localization of dopamine receptor subtypes in rat olfactory mucosa and bulb: a combined in situ hybridization and ligand binding radioautographic approach. J Chem Neuroanat. 1997;12:243–57.CrossRefGoogle Scholar
  40. 40.
    Coronas V, Bantubungi K, Fombonne J, Krantic S, Schiffmann SN, Roger M. Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J Neurochem. 2004;91:1292–301.CrossRefGoogle Scholar
  41. 41.
    Lao CL, Lu C-S, Chen J-C. Dopamine D 3 receptor activation promotes neural stem/progenitor cell proliferation through AKT and ERK1/2 pathways and expands type-B and -C cells in adult subventricular zone. Glia. 2013;61:475–89.CrossRefGoogle Scholar
  42. 42.
    Desplats P, Spencer B, Crews L, et al. α-Synuclein induces alterations in adult neurogenesis in Parkinson disease models via p53-mediated repression of Notch1. J Biol Chem. 2012;287:31691–702.CrossRefGoogle Scholar
  43. 43.
    Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci. 2008;28:4250–60.CrossRefGoogle Scholar
  44. 44.
    Oliveira LMA, Falomir-Lockhart LJ, Botelho MG, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson’s patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6:e1994.CrossRefGoogle Scholar
  45. 45.
    Zhang L, Deng J, Pan Q, Zhan Y, Fan J-B, Zhang K, Zhang Z. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease. J Genet Genomics. 2016;43:587–92.CrossRefGoogle Scholar
  46. 46.
    Lindqvist D, Kaufman E, Brundin L, Hall S, Surova Y, Hansson O. Non-motor symptoms in patients with Parkinson’s disease—correlations with inflammatory cytokines in serum. PLoS One. 2012;7:e47387.CrossRefGoogle Scholar
  47. 47.
    Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M. Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun. 2009;23:55–63.CrossRefGoogle Scholar
  48. 48.
    Revest J-M, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza P-V, Abrous DN. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry. 2009;14:959–67.CrossRefGoogle Scholar
  49. 49.
    van den Berge SA, van Strien ME, Korecka JA, et al. The proliferative capacity of the subventricular zone is maintained in the parkinsonian brain. Brain. 2011;134:3249–63.CrossRefGoogle Scholar
  50. 50.
    Wang S, Okun MS, Suslov O, et al. Neurogenic potential of progenitor cells isolated from postmortem human parkinsonian brains. Brain Res. 2012;1464:61–72.CrossRefGoogle Scholar
  51. 51.
    Van Den Berge SA, Middeldorp J, Zhang CE, Curtis MA, Leonard BW, Mastroeni D, Voorn P, Van De Berg WDJ, Huitinga I, Hol EM. Longterm quiescent cells in the aged human subventricular neurogenic system specifically express GFAP-δ. Aging Cell. 2010;9:313–26.CrossRefGoogle Scholar
  52. 52.
    van den Berge SA, van Strien ME, Hol EM. Resident adult neural stem cells in Parkinson’s disease—the brain’s own repair system? Eur J Pharmacol. 2013;719:117–27.CrossRefGoogle Scholar
  53. 53.
    Cave JW, Wang M, Baker H. Adult subventricular zone neural stem cells as a potential source of dopaminergic replacement neurons. Front Neurosci. 2014;8:16.CrossRefGoogle Scholar
  54. 54.
    Wang T, Forsythe J, Parish C, Nisbet D. Biofunctionalisation of polymeric scaffolds for neural tissue engineering. J Biomater Appl. 2012;27:369–90.CrossRefGoogle Scholar
  55. 55.
    Wang T-Y, Forsythe JS, Nisbet DR, Parish CL. Promoting engraftment of transplanted neural stem cells/progenitors using biofunctionalised electrospun scaffolds. Biomaterials. 2012;33:9188–97.CrossRefGoogle Scholar
  56. 56.
    Wang T-Y, Bruggeman KF, Kauhausen JA, Rodriguez AL, Nisbet DR, Parish CL. Functionalized composite scaffolds improve the engraftment of transplanted dopaminergic progenitors in a mouse model of Parkinson’s disease. Biomaterials. 2016;74:89–98.CrossRefGoogle Scholar
  57. 57.
    Addington CP, Dharmawaj S, Heffernan JM, Sirianni RW, Stabenfeldt SE. Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α. Matrix Biol. 2016;60–61:206. Scholar
  58. 58.
    Fallon J, Reid S, Kinyamu R, et al. In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A. 2000;97:14686–91.CrossRefGoogle Scholar
  59. 59.
    Cooper O, Isacson O. Intrastriatal transforming growth factor alpha delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci. 2004;24:8924–31.CrossRefGoogle Scholar
  60. 60.
    Álvarez Z, Mateos-Timoneda MA, Hyroššová P, Castaño O, Planell JA, Perales JC, Engel E, Alcántara S. The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche. Biomaterials. 2013;34:2221–33.CrossRefGoogle Scholar
  61. 61.
    Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J Control Release. 2016;235:291–305.CrossRefGoogle Scholar
  62. 62.
    Lim TC, Rokkappanavar S, Toh WS, Wang L-S, Kurisawa M, Spector M. Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1α release and compatible structural support. FASEB J. 2013;27:1023–33.CrossRefGoogle Scholar
  63. 63.
    Barker RA, Drouin-Ouellet J, Parmar M. Cell-based therapies for Parkinson disease—past insights and future potential. Nat Rev Neurol. 2015;11:492–503.CrossRefGoogle Scholar
  64. 64.
    Pohanka M. Cholinesterases, a target of pharmacology and toxicology. Biomed Pap. 2011;155:219–23.CrossRefGoogle Scholar
  65. 65.
    Demars MP, Hollands C, Zhao KDT, Lazarov O. Soluble amyloid precursor protein-α rescues age-linked decline in neural progenitor cell proliferation. Neurobiol Aging. 2013;34:2431–40.CrossRefGoogle Scholar
  66. 66.
    Demars MP, Bartholomew A, Strakova Z, Lazarov O. Soluble amyloid precursor protein: a novel proliferation factor of adult progenitor cells of ectodermal and mesodermal origin. Stem Cell Res Ther. 2011;2:36.CrossRefGoogle Scholar
  67. 67.
    Gadadhar A, Marr R, Lazarov O. Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci. 2011;31:2615–23.CrossRefGoogle Scholar
  68. 68.
    Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener. 2011;6:85.CrossRefGoogle Scholar
  69. 69.
    Chuang TT. Neurogenesis in mouse models of Alzheimer’s disease. Biochim Biophys Acta. 2010;1802:872–80.CrossRefGoogle Scholar
  70. 70.
    Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2004;101:343–7.CrossRefGoogle Scholar
  71. 71.
    Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis. 2006;24:1–14.CrossRefGoogle Scholar
  72. 72.
    Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J. Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis. 2012;47:155–62.CrossRefGoogle Scholar
  73. 73.
    Briley D, Ghirardi V, Woltjer R, Renck A, Zolochevska O, Taglialatela G, Micci M-A. Preserved neurogenesis in non-demented individuals with AD neuropathology. Sci Rep. 2016;6:27812.CrossRefGoogle Scholar
  74. 74.
    Park D, Lee HJ, Joo SS, et al. Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol. 2012;234:521–6.CrossRefGoogle Scholar
  75. 75.
    Park D, Yang Y-H, Bae DK, et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging. 2013;34:2639–46.CrossRefGoogle Scholar
  76. 76.
    Zhang W, Wang GM, Wang PJ, Zhang Q, Sha SH. Effects of neural stem cells on synaptic proteins and memory in a mouse model of Alzheimer’s disease. J Neurosci Res. 2014;92:185–94.CrossRefGoogle Scholar
  77. 77.
    Zhang Q, Wu H, Wang Y, Gu G, Zhang W, Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem. 2016;136:815–25.CrossRefGoogle Scholar
  78. 78.
    Chen Y, Pan C, Xuan A, Xu L, Bao G, Liu F, Fang J, Long D. Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats. Med Sci Monit. 2015;21:3608–15.CrossRefGoogle Scholar
  79. 79.
    Zhang R, Li Y, Hu B, Lu Z, Zhang J, Zhang X. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv Mater. 2016;28:6345–52.CrossRefGoogle Scholar
  80. 80.
    Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano. 2014;8:76–103.CrossRefGoogle Scholar
  81. 81.
    Sanchez-Ramos J, Cimino C, Avila R, Rowe A, Chen R, Whelan G, Lin X, Cao C, Ashok R. Pilot study of granulocyte-colony stimulating factor for treatment of Alzheimer’s disease. J Alzheimers Dis. 2012;31:843–55.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Cláudia Saraiva
    • 1
  • Tiago Santos
    • 1
  • Liliana Bernardino
    • 1
    Email author
  1. 1.Health Sciences Research Centre, Faculty of Health SciencesUniversity of Beira InteriorCovilhãPortugal

Personalised recommendations