Advertisement

Evaluating the Performance of Signal Processing Techniques to Diagnose Fault in a Reciprocating Compressor Under Varying Speed Conditions

  • Vikas Sharma
  • Anand Parey
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)

Abstract

An inefficient detection of a fault in a reciprocating compressor (RC) by a signal processing technique could lead to high energy losses. To achieve a high-pressure ratio, RCs are used in such pressure-based applications. This paper evaluates the performance of nonstationary signal processing techniques employed for monitoring the health of an RC, based on its vibration signal. Acquired vibration signals have been decomposed using empirical mode decomposition (EMD) and variational mode decomposition (VMD) and compared respectively. Afterward, few condition indicators (CIs) have been evaluated from decomposed modes of vibration signals. Perspectives of this work are therefore detailed at the end of this paper.

Keywords

Condition indicator Mode decomposition Signal processing Reciprocating compressor 

References

  1. 1.
    Zhao, H., Wang, J., Han, H., Gao, Y.: A feature extraction method based on HLMD and MFE for bearing clearance fault of reciprocating compressor. Measurement 89, 34–43 (2016)CrossRefGoogle Scholar
  2. 2.
    Chen, G. J., Zou, L. Q., Zhao, H. Y., & Li, Y. Q. (2016). An improved local mean decomposition method and its application for fault diagnosis of reciprocating compressor. J. Vibroeng. 18(3)Google Scholar
  3. 3.
    Parey, A., Pachori, R.B.: Variable cosine windowing of intrinsic mode functions: Application to gear fault diagnosis. Measurement 45(3), 415–426 (2012)CrossRefGoogle Scholar
  4. 4.
    Sharma, V., Parey, A.: Frequency domain averaging based experimental evaluation of gear fault without tachometer for fluctuating speed conditions. Mech. Syst. Signal Process. 85, 278–295 (2017)CrossRefGoogle Scholar
  5. 5.
    Deng, Y., Wang, W., Qian, C., Wang, Z., Dai, D.: Boundary-processing-technique in EMD method and Hilbert transform. Chin. Sci. Bull. 46(11), 954–960 (2001)CrossRefGoogle Scholar
  6. 6.
    Zhong, C., Shixiong, Z.: Analysis on end effects of EMD method. J. Data Acquis. Process. 1, 025 (2003)Google Scholar
  7. 7.
    Wang, T., Zhang, M., Yu, Q., Zhang, H.: Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. J. Appl. Geophys. 83, 29–34 (2012)CrossRefGoogle Scholar
  8. 8.
    Hu, J., Wang, J., Xiao, L.: A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts. Renew. Energy, 670–685 (2017)Google Scholar
  9. 9.
    Li, Y., Xu, M., Wei, Y., Huang, W.: Diagnostics of reciprocating compressor fault based on a new envelope algorithm of empirical mode decomposition. J. Vibroeng. 16(5), 2269–2286 (2014)Google Scholar
  10. 10.
    Wang, L., Zhao, J.-L., Wang, F.-T., Ma, X.-J.: Fault diagnosis of reciprocating compressor cylinder based on EMD coherence method. J. Harbin Instit. Technol. (New Series) 19(1), 101–106 (2012)Google Scholar
  11. 11.
    Wang, L., Zhao, J.-L., Wang, F.-T., Ma, X.-J.: Fault diagnosis of reciprocating compressors valve based on cyclostationary method. J. Donghua Univ. (Engl. Edit.) 28(4), 349–352 (2011)Google Scholar
  12. 12.
    Guerra, C.J., Kolodziej, J.R.: A Data-Driven Approach for Condition Monitoring of Reciprocating Compressor Valves. J. Eng. Gas Turbines Power 136(4), 041601 (2014)CrossRefGoogle Scholar
  13. 13.
    Duan, L., Wang, Y., Wang, J., Zhang, L., Chen, J.: Undecimated lifting wavelet packet transform with boundary treatment for machinery incipient fault diagnosis. Shock Vib. 2016 (2015)Google Scholar
  14. 14.
    Pichler, K., Lughofer, E., Pichler, M., Buchegger, T., Klement, E.P., Huschenbett, M.: Fault detection in reciprocating compressor valves under varying load conditions. Mech. Syst. Signal Process. 70, 104–119 (2016)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Zhang, Y., Duan, L., Wang, X.: Multi-domain sequential signature analysis for machinery intelligent diagnosis. In: 10th International Conference on Sensing Technology (ICST), pp. 1–6. IEEE (2016)Google Scholar
  16. 16.
    Duan, L., Zhang, Y., Zhao, J., Wang, J., Wang, X., Zhao, F.: A hybrid approach of SAX and bitmap for machinery fault diagnosis. In: International Symposium on Flexible Automation (ISFA), pp. 390–396. IEEE, Aug 2016Google Scholar
  17. 17.
    Wang, Y., Gao, A., Zheng, S., Peng, X.: Experimental investigation of the fault diagnosis of typical faults in reciprocating compressor valves. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 230(13), 2285–2299 (2016)CrossRefGoogle Scholar
  18. 18.
    Qin, Q., Jiang, Z.N., Feng, K., He, W.: A novel scheme for fault detection of reciprocating compressor valves based on basis pursuit, wave matching and support vector machine. Measurement 45(5), 897–908 (2012)CrossRefGoogle Scholar
  19. 19.
    AlThobiani, F., Ball, A.: An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Syst. Appl. 41(9), 4113–4122 (2014)CrossRefGoogle Scholar
  20. 20.
    Yang, B.S., Hwang, W.W., Kim, D.J., Tan, A.C.: Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines. Mech. Syst. Signal Process. 19(2), 371–390 (2005)CrossRefGoogle Scholar
  21. 21.
    Cui, H., Zhang, L., Kang, R., Lan, X.: Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method. J. Loss Prev. Process Ind. 22(6), 864–867 (2009)CrossRefGoogle Scholar
  22. 22.
    Zouari, R., Antoni, J., Ille, J.L., Sidahmed, M., Willaert, M., Watremetz, M.: Cyclostationary modelling of reciprocating compressors and application to valve fault detection. Int. J. Acoust. Vib. 12(4), 116–124 (2007)Google Scholar
  23. 23.
    Zhao, C., Feng, Z.: Application of multi-domain sparse features for fault identification of planetary gearbox. Measurement 104, 169–179 (2017)CrossRefGoogle Scholar
  24. 24.
    Li, Z., Jiang, Y., Wang, X., Peng, Z.: Multi-mode separation and nonlinear feature extraction of hybrid gear failures in coal cutters using adaptive nonstationary vibration analysis. Nonlinear Dyn. 84(1), 295–310 (2016)CrossRefGoogle Scholar
  25. 25.
    Mahgoun, H., Chaari, F., Felkaoui, A.: Detection of gear faults in variable rotating speed using variational mode decomposition (VMD). Mech. Ind. 17(2), 207 (2016)CrossRefGoogle Scholar
  26. 26.
    Zhang, M., Jiang, Z., Feng, K.: Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump. Mech. Syst. Signal Process. 93, 460–493 (2017)CrossRefGoogle Scholar
  27. 27.
    An, X., Tang, Y.: Application of variational mode decomposition energy distribution to bearing fault diagnosis in a wind turbine. Trans. Inst. Meas. Control 0142331215626247 (2016)Google Scholar
  28. 28.
    Zhao, H., Li, L.: Fault diagnosis of wind turbine bearing based on variational mode decomposition and Teager energy operator. IET Renew. Power Gener. 11(4), 453–460 (2016)CrossRefGoogle Scholar
  29. 29.
    Liu, J., Wang, G., Zhao, T., Zhang, L.: Fault diagnosis of on-load tap-changer based on variational mode decomposition and relevance vector machine. Energies 10(7), 946 (2017)CrossRefGoogle Scholar
  30. 30.
    Huang, N., Chen, H., Cai, G., Fang, L., Wang, Y.: Mechanical fault diagnosis of high voltage circuit breakers based on variational mode decomposition and multi-layer classifier. Sensors 16(11), 1887 (2016)CrossRefGoogle Scholar
  31. 31.
    An, X., Zeng, H.: Pressure fluctuation signal analysis of a hydraulic turbine based on variational mode decomposition. Proc. Inst. Mech. Eng. Part A J. Pow. Energy 229(8), 978–991 (2015)CrossRefGoogle Scholar
  32. 32.
    Fu, W., Zhou, J., Zhang, Y.: Fault Diagnosis for Rolling Element Bearings with VMD Time-Frequency Analysis and SVM. In: Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC). IEEE, pp. 69–72 (2015)Google Scholar
  33. 33.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sharma, V., Parey, A.: A review of gear fault diagnosis using various condition indicators. Proc. Eng. 144, 253–263 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations