Effect of Box Size on Dilative Behaviour of Sand in Direct Shear Test

  • S. R. Mohapatra
  • S. R. MishraEmail author
  • S. Nithin
  • K. Rajagopal
  • Jitendra Sharma
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 16)


In this paper, an attempt is made to analyse the dilative behaviour of dense sand at two different sizes of the direct shear box, i.e., small (60 mm × 60 mm × 30 mm) and large (305 mm × 305 mm × 140 mm). A three-dimensional numerical model is developed using the FLAC3D software to analyse the size effect on dilative behaviour of dense sand along the top and the shear plane of the box at 15 kPa normal pressure. It is observed that the vertical deformation of soil on top plane increases linearly with horizontal displacement, whereas on shear plane, the vertical deformation remains constant after yielding of sand. It is also found that there is greater movement of sand particles at the front and the back of the box for the large shear box compared with that for the small shear box.


Direct shear Numerical modelling FLAC Dilation Mohr–Coulomb 

Abbreviations and Notations


Width of the shear box


Direct shear box


Height of the shear box


Length of the shear box




Two dimensional




Diameter corresponding to percentage finer than 50%


Dilation angle


Peak friction angle


Friction angle at 40-mm horizontal displacement


Normal pressure


Peak shear stress


Shear–stress at 40-mm horizontal displacement


  1. AASHTO. (2008). Standard method of test for direct shear test of soil under consolidated drained conditions. Washington, D.C.: T236-08-UL American Association of State Highway and Transportation Officials.Google Scholar
  2. ASTM. (2011). ASTM D3080/D3080M: Standard test method for direct shear test for soils under consolidated drained conditions. West Conshohocken, Pennsylvania, USA: American Society for Testing and Materials.Google Scholar
  3. Bareither, C. A., Benson, C. H., & Edil, T. B. (2007). Reproducibility of direct shear tests conducted on granular backfill materials. ASTM Geotechnical Testing Journal, 31(1).Google Scholar
  4. Bareither, C. A., Benson, C. H., & Edil, T. B. (2008). Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests. Canadian Geotechnical Journal, 45, 1224–1236.CrossRefGoogle Scholar
  5. Bolton, M. D. (1986). The strength and dilatancy of sand. Géotechnique, 36(1), 65–78.CrossRefGoogle Scholar
  6. Chakraborty, T., & Salgado, R. (2010). Dilatancy and shear strength of sand at low confining pressures. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 136(3), 527–532.CrossRefGoogle Scholar
  7. Cui, L., & O’Sullivan, C. (2006). Exploring the macro- and micro-scale response of an idealized granular material in the direct shear apparatus. Géotechnique, 56(7), 455–468.CrossRefGoogle Scholar
  8. Houlsby, G. T. (1991). How the dilatancy of soils affect their behaviour. Report No. OUEL-1888/91. Oxford, UK: Oxford University Engineering Laboratory.Google Scholar
  9. Indraratna, B., Ngo, N. T., Rujikiatkamjorn, C., & Vinod, J. S. (2014). Behavior of fresh and fouled railway ballast subjected to direct shear testing: Discrete element simulation. International Journal of Geomechanics, 14(1), 34–44.CrossRefGoogle Scholar
  10. Itasca. (2005). FLAC3D 5.00 user’s manual. Minneapolis, USA: Itasca Consulting Group Inc.Google Scholar
  11. Jewell, R. A. (1989). Direct shear tests on sand. Géotechnique, 39(2), 309–322.CrossRefGoogle Scholar
  12. Jewell, R. A., & Wroth, C. P. (1987). Direct shear tests on reinforced sand. Géotechnique, 37(1), 53–68.CrossRefGoogle Scholar
  13. Lings, M. L., & Dietz, M. S. (2004). An improved direct shear apparatus for sand. Géotechnique, 54(4), 245–256.CrossRefGoogle Scholar
  14. Liu, H. S. (2006). Simulating a direct shear box test by DEM. Canadian Geotechnical Journal, 43, 165–178.MathSciNetCrossRefGoogle Scholar
  15. Mohapatra, S. R., Rajagopal, K., & Sharma, J. S. (2014). Analysis of geotextile-reinforced stone columns subjected to lateral loading. In Proceedings of the 10th International Conference on Geosynthetics, Berlin, Germany.Google Scholar
  16. Mohapatra, S. R., Rajagopal, K., & Sharma, J. S. (2016). Large direct shear load test on geosynthetic encased granular columns. Geotextiles & Geomembranes, 44(3), 396–405.CrossRefGoogle Scholar
  17. Newland, P. L., & Allely, B. H. (1957). Volume changes in drained triaxial tests on granular materials. Géotechnique, 7(1), 17–34.CrossRefGoogle Scholar
  18. Ozer, C., & Arshiya, A. (2015). Dilatancy and friction angles based on in situ soil conditions. ASCE Journal of Geotechnical and Geoenvironmental Engineering, 141.Google Scholar
  19. Potts, D. M., Dounias, G. T., & Vaughan, P. R. (1987). Géotechnique, 37(1), 1l–23.CrossRefGoogle Scholar
  20. Shibuya, S., Mitachi, T., & Tamate, S. (1997). Interpretation of direct shear box testing of sands as quasi-simple shear. Géotechnique, 47(4), 769–790.CrossRefGoogle Scholar
  21. Thronton, C., & Zhang, L. (2003). Numerical simulations of the direct shear test. Chemical Engineering & Technology, 26(2), 153–156.CrossRefGoogle Scholar
  22. Zhang, L., & Thornton, C. (2007). A numerical examination of the direct shear test. Géotechnique, 57(4), 343–354.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • S. R. Mohapatra
    • 1
  • S. R. Mishra
    • 1
    Email author
  • S. Nithin
    • 1
  • K. Rajagopal
    • 1
  • Jitendra Sharma
    • 2
  1. 1.Department of Civil EngineeringIndian Institute of Technology MadrasChennaiIndia
  2. 2.Department of Civil EngineeringYork UniversityTorontoCanada

Personalised recommendations