Advertisement

Energy Efficiency Optimization in SFR-Based Power Telecommunication Networks

  • Honghao ZhaoEmail author
  • Siwen Zhao
  • Rimin Jiang
  • Haiyang Huang
  • Xiangdong Jiang
  • Ling Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 848)

Abstract

Soft Frequency Reuse (SFR) can coordinate the inter-cell interference (ICI) by control the carriers and transmitting power. It will be used in the 5G. With the energy consumption increasing in the wireless network, the energy efficiency is an important index to evaluate the network performance in 5G. In this paper, we investigates the global energy efficiency optimization problem in SFR-based cellular networks. We formulate the global energy efficiency optimization as a fractional program model. It is very hard to solve directly the optimization model. To find the optimal solution of this model, we utilize the Lagrange function and KKT condition to attain the optimal transmitting power allocations. Then, we utilize the simulated annealing method to find the transmitting power allocations and sub-channel assignments. Finally, we make a numerical simulation to validate the algorithm proposed. The simulation results show that our algorithm proposed is feasible.

Keywords

Soft frequency reuse Energy efficient Lagrange function KKT condition Simulated annealing method 

References

  1. 1.
    Wu, G.: Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wirel. Commun. 22(2), 145–151 (2015)CrossRefGoogle Scholar
  2. 2.
    Yang, C.: An efficient hybrid spectrum access algorithm in OFDM-based wideband cognitive radio networks. Neurocomputing 125, 33–40 (2014)CrossRefGoogle Scholar
  3. 3.
    Elayoubil, S.E.: Performance evaluation of frequency planning schemes in OFDMA-based networks. IEEE Trans. Wirel. Commun. 7(5), 1623–1633 (2008)CrossRefGoogle Scholar
  4. 4.
    R1-050841, Huawei, Further Analysis of Soft Frequency Reuse Scheme, 3GPP TSG RAN WG1#42, 29 August–2 September (2005)Google Scholar
  5. 5.
    Ren, Z.: Energy-efficient resource allocation in downlink OFDM wireless systems with proportional rate constraints. IEEE Trans. Veh. Technol. 63(5), 2139–2150 (2014)CrossRefGoogle Scholar
  6. 6.
    Al-Zahrani, A.Y., Yu, F.R.: An energy-efficient resource allocation and interference management scheme in green heterogeneous networks using game theory. IEEE Trans. Veh. Technol. 65(7), 5384–5396 (2016)CrossRefGoogle Scholar
  7. 7.
    Yang, K.: Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Trans. Veh. Technol. 66(6), 5086–5098 (2016)CrossRefGoogle Scholar
  8. 8.
    Wang, X.: Energy-efficient resource allocation in coordinated downlink multicell OFDMA systems. IEEE Trans. Veh. Technol. 65(3), 1395–1408 (2016)CrossRefGoogle Scholar
  9. 9.
    Mahmud, A.: On the energy efficiency of fractional frequency reuse techniques. In: IEEE Wireless Communications and Networking Conference, pp. 2348–2353 (2014)Google Scholar
  10. 10.
    Xie, B.: Joint spectral efficiency and energy efficiency in FFR based wireless heterogeneous networks. IEEE Trans. Veh. Technol. PP(99), 1 (2017)CrossRefGoogle Scholar
  11. 11.
    Qi, Z.:Analytical evaluation of throughput and power efficiency using fractional frequency reuse. In: IEEE Vehicular Technology Conference, pp. 1–5. IEEE (2016)Google Scholar
  12. 12.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ng, D.W.K.: Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Trans. Wirel. Commun. 11(10), 3618–3631 (2012)CrossRefGoogle Scholar
  14. 14.
    He, S.: Coordinated beam-forming for energy efficient transmission in multicell multiuser systems. IEEE Trans. Commun. 61(12), 4961–4971 (2013)CrossRefGoogle Scholar
  15. 15.
    Bu, S.: Interference-aware energy-efficient resource allocation for OFDMA-based heterogeneous networks with incomplete channel state information. IEEE Trans. Veh. Technol. 64(3), 1036–1050 (2015)CrossRefGoogle Scholar
  16. 16.
    Wang, Y.: Energy-efficient resource allocation for different QoS requirements in heterogeneous networks. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). IEEE (2016)Google Scholar
  17. 17.
    Masoudi, M.: Energy efficient resource allocation in two-tier OFDMA networks with QoS guarantees. Wirel. Netw. 1–15 (2017)Google Scholar
  18. 18.
    Danish, E.: Content-aware resource allocation in OFDM systems for energy-efficient video transmission. IEEE Trans. Consum. Electron. 60(3), 320–328 (2014)CrossRefGoogle Scholar
  19. 19.
    Xu, L.: Energy-efficient resource allocation for multiuser OFDMA system based on hybrid genetic simulated annealing. Soft Comput. 21(14), 1–8 (2016)Google Scholar
  20. 20.
    Tang, M., Xin, Y.: Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Comput. Netw. 100, 1–11 (2016)CrossRefGoogle Scholar
  21. 21.
    Feng, D.: A survey of energy-efficient wireless communications. IEEE Commun. Surv. Tutor. 15(1), 167–178 (2013)CrossRefGoogle Scholar
  22. 22.
    Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)CrossRefGoogle Scholar
  24. 24.
    Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 220(2017), 160–169 (2017)CrossRefGoogle Scholar
  25. 25.
    Jiang, D., Wang, Y., Han, Y., et al.: Maximum connectivity-based channel allocation algorithm in cognitive wireless networks for medical applications. Neurocomputing 220(2017), 41–51 (2017)CrossRefGoogle Scholar
  26. 26.
    Jiang, D., Xu, Z., Li, W., et al.: An energy-efficient multicast algorithm with maximum network throughput in multi-hop wireless networks. J. Commun. Netw. 18(5), 713–724 (2016)CrossRefGoogle Scholar
  27. 27.
    Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet Things J. 3(6), 1437–1447 (2016)CrossRefGoogle Scholar
  28. 28.
    Jiang, D., Nie, L., Lv, Z., et al.: Spatio-temporal Kronecker compressive sensing for traffic matrix recovery. IEEE Access 4, 3046–3053 (2016)CrossRefGoogle Scholar
  29. 29.
    Jiang, D., Liu, J., Lv, Z., et al.: A robust energy-efficient routing algorithm to cloud computing networks for learning. J. Intell. Fuzzy Syst. 31(5), 2483–2495 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Honghao Zhao
    • 1
    Email author
  • Siwen Zhao
    • 2
  • Rimin Jiang
    • 3
  • Haiyang Huang
    • 3
  • Xiangdong Jiang
    • 4
  • Ling Wang
    • 4
  1. 1.State Grid Liaoning Electric Power Company LimitedShenyangChina
  2. 2.China Resources Power Investment Co., Ltd.ShenyangChina
  3. 3.Liaoning Planning and Designing Institute of Post and Telecommunication Company LimitedShenyangChina
  4. 4.State Grid Benxi Electric Power Supply CompanyBenxiChina

Personalised recommendations