Diabetic Retinopathy: Clinical, Genetic, and Health Economics (An Asian Perspective)

  • Siddhita Nare
  • Sunita Mohan
  • Uthra Satagopan
  • Sundaram Natarajan
  • Govindasamy Kumaramanickavel
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Diabetes mellitus is the fastest growing disease in the world that is estimated to reach nearly half a billion in 2045, and a third of them would have microvascular complication like diabetic retinopathy (DR). Hyperglycemia, hypertension, and dyslipidemia are some of the controllable risk factors. DR is classified into nonproliferative, proliferative, and macular edema types. Many molecular factors like VEGF, ALR2, eNOS, MTHFR, ACE, IGF, and RAGE and its associated single nucleotide polymorphisms play a critical role in the process of neovascularization. Some of the drug discovery and newer treatment regimens are based on these molecular factors. More research by the clinicians, epidemiologists, and vision scientists is necessary to reduce the visual morbidity and disease burden of DR in the community.


Diabetic retinopathy Health economics Genetic susceptibility Type 2 diabetes mellitus Prevalence 


Conflict of Interest

None of the authors have any proprietary interests or conflicts of interest related to this submission.


  1. 1.
    IDF. IDF Diabetes Atlas – 8th Edition; 2017.Google Scholar
  2. 2.
    Congdon N, Zheng Y, He M. The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol [Internet]. 2012;60(5):428. Available from: CrossRefGoogle Scholar
  3. 3.
    Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis [Internet]. 2015;2(1):17. Available from: CrossRefGoogle Scholar
  4. 4.
    Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Policy and practice. Bull World Health Organ [Internet]. 2004;82(11):844–51. Available from: //publication/uuid/BAA31E85-D8BD-4CD4-A484-651963213B14Google Scholar
  5. 5.
    World Health Organization. Prevention of blindness from diabetes mellitus. Geneva WHO [Internet]. 2005:1–48. Available from:
  6. 6.
    Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care [Internet]. 2012;35(3):556–64. Available from: CrossRefGoogle Scholar
  7. 7.
    Cohen SR, Gardner TW. Diabetic retinopathy and diabetic macular Edema. Dev Ophthalmol [Internet]. 2016;55:137–46. Available from: CrossRefGoogle Scholar
  8. 8.
    Mohan V, Pradeepa R. Epidemiology of diabetes in different regions of India. Heal Adm. 2009;22(1):1–18.Google Scholar
  9. 9.
    Gadkari S, Maskati Q, Nayak B. Prevalence of diabetic retinopathy in India: the all India ophthalmological society diabetic retinopathy eye screening study 2014. Indian J Ophthalmol [Internet]. 2016;64(1):38. Available from: CrossRefGoogle Scholar
  10. 10.
    Sunita M, Singh AK, Rogye A, Sonawane M, Gaonkar R, Srinivasan R, et al. Prevalence of diabetic retinopathy in urban slums: the Aditya Jyot diabetic retinopathy in urban Mumbai slums study-report 2. Ophthalmic Epidemiol. 2017;24(5):303–10.CrossRefGoogle Scholar
  11. 11.
    Hovind P, Tarnow L, Rossing K, Rossing P, Eising S, Larsen N, et al. Decreasing incidence of severe diabetic microangiopathy in type 1 diabetes. Diabetes Care. 2003;26(4):1258–64.CrossRefGoogle Scholar
  12. 12.
    Kumar J. Economic burden of diabetes. Med Updat [Internet]. 2013:205–8. Available from:
  13. 13.
    Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet (London, England). 2010;376(9735):124–36.CrossRefGoogle Scholar
  14. 14.
    Liew G, Klein R, Wong TY. The role of genetics in susceptibility to diabetic retinopathy. Int Ophthalmol Clin [Internet]. 2009;49(2):35–52. Available from: CrossRefGoogle Scholar
  15. 15.
    Lim LS, Wong TY. Lipids and diabetic retinopathy. Expert Opin Biol Ther. 2012;12(1):93–105.CrossRefGoogle Scholar
  16. 16.
    Zhang W, Liu H, Rojas M, Caldwell RW, Caldwell RB. Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy [Internet]. 2011;3(5):609–28. Available from: CrossRefGoogle Scholar
  17. 17.
    Levene R, Horton G, Gorn R. Flat-mount studies of human retinal vessels. Am J Ophthalmol [Internet]. 2018;61(2):283–9. Available from: CrossRefGoogle Scholar
  18. 18.
    Yanoff M. Ocular pathology of diabetes mellitus. Am J Ophthalmol [Internet]. 2018;67(1):21–38. Available from: CrossRefGoogle Scholar
  19. 19.
    Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. J Clin Invest. 1998;102(4):783–91.CrossRefGoogle Scholar
  20. 20.
    Abu El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Investig Ophthalmol Vis Sci. 2004;45(8):2760–6.CrossRefGoogle Scholar
  21. 21.
    Lutty GA, DS ML, Merges C, Diggs A, Plouét J. Localization of vascular endothelial growth factor in human retina and choroid. Arch Ophthalmol [Internet]. 1996;114(8):971–7. Available from: CrossRefGoogle Scholar
  22. 22.
    Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is. Diabetes Care [Internet]. 2007;30(11):2902–8. Available from: CrossRefGoogle Scholar
  23. 23.
    Carrasco E, Hernández C, de Torres I, Farrés J, Simó R. Lowered cortistatin expression is an early event in the human diabetic retina and is associated with apoptosis and glial activation. Mol Vis [Internet]. 2008;14(July):1496–502. Available from: Google Scholar
  24. 24.
    Kase S, Ishida S, Rao NA. Increased expression of αA-crystallin in human diabetic eye. Int J Mol Med. 2011;28(4):505–11.PubMedGoogle Scholar
  25. 25.
    Simó R, Hernández C. Advances in the medical treatment of diabetic retinopathy. Diabetes Care. 2009;32(8):1556–62.CrossRefGoogle Scholar
  26. 26.
    Abu El-Asrar AM, Struyf S, Kangave D, Geboes K, Van Damme J. Chemokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Eur Cytokine Netw. 2006;17(3):155–65.PubMedGoogle Scholar
  27. 27.
    Wakabayashi Y, Usui Y, Okunuki Y, Kezuka T, Takeuchi M, Goto H, et al. Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina. 2010;30(2):339–44.CrossRefGoogle Scholar
  28. 28.
    Cheung CMG, Vania M, Ang M, Chee SP, Li J. Comparison of aqueous humor cytokine and chemokine levels in diabetic patients with and without retinopathy. Mol Vis [Internet]. 2012;18(November 2011):830–7. Available from: PubMedPubMedCentralGoogle Scholar
  29. 29.
    Suzuki Y, Nakazawa M, Suzuki K, Yamazaki H, Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J Ophthalmol. 2011;55(3):256–63.CrossRefGoogle Scholar
  30. 30.
    Schwartzman ML, Iserovich P, Gotlinger K, Bellner L, Dunn MW, Sartore M, et al. Profile of lipid and protein autacoids in diabetic vitreous correlates with the progression of diabetic retinopathy. Diabetes. 2010;59(7):1780–8.CrossRefGoogle Scholar
  31. 31.
    Oh IK, Kim S-W, Oh J, Lee TS, Huh K. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy. Curr Eye Res. 2010;35(12):1116–27.CrossRefGoogle Scholar
  32. 32.
    Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.CrossRefGoogle Scholar
  33. 33.
    Kitada S, Otsuka Y, Kokubu N, Kasahara Y, Kataoka Y, Noguchi T, et al. Post-load hyperglycemia as an important predictor of long-term adverse cardiac events after acute myocardial infarction: a scientific study. Cardiovasc Diabetol [Internet]. 2010;9(1):75. Available from: CrossRefGoogle Scholar
  34. 34.
    Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol [Internet]. 2011;12(3):352–61. Available from: CrossRefGoogle Scholar
  35. 35.
    Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58.CrossRefGoogle Scholar
  36. 36.
    Ma JH, Wang JJ, Zhang SX. The unfolded protein response and diabetic retinopathy. J Diabetes Res [Internet]. 2014;2014:160140. Available from: Google Scholar
  37. 37.
    Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. 2001;50(8):1938–42.CrossRefGoogle Scholar
  38. 38.
    Neural. Mechanisms of retinal neuroprotection of calcium dobesilate: therapeutic implications. Neural Regen Res. 2017;12(10):2017–9.Google Scholar
  39. 39.
    Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech [Internet]. 2012;5(4):444–56. Available from: CrossRefGoogle Scholar
  40. 40.
    Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007;298(8):902–16.CrossRefGoogle Scholar
  41. 41.
    Toussaint D, Cogan DG, Kuwabara T. Extravascular lesions of diabetic retinopathy. Arch Ophthalmol [Internet]. 1962;67(1):42–7. Available from: CrossRefGoogle Scholar
  42. 42.
    Rezaee MRS, Amiri AA, Hashemi-Soteh MB, Daneshvar F, Emady-Jamaly R, Jafari R, et al. Aldose reductase C-106T gene polymorphism in type 2 diabetics with microangiopathy in Iranian individuals. Indian J Endocrinol Metab [Internet]. 2015;19(1):95–9. Available from: CrossRefGoogle Scholar
  43. 43.
    Marzouk SA, Zied AAA, Zakaria NH, Gharraf ES. Experimental and clinical research original article role of aldose reductase C-106T polymorphism among diabetic Egyptian patients with different microvascular complications. Am J Exp Clin Res. 2014;1(2):18–24.Google Scholar
  44. 44.
    Deng Y, Yang X-F, Gu H, Lim A, Ulziibat M, Snellingen T, et al. Association of C(−106)T polymorphism in aldose reductase gene with diabetic retinopathy in chinese patients with type 2 diabetes mellitus. Vol. 29, Chinese medical sciences journal = Chung-kuo i hsüeh k’o hsüeh tsa chih/Chinese Academy of Medical Sciences; 2014. 1–6 p.Google Scholar
  45. 45.
    Hampton BM, Schwartz SG, Brantley MA, Flynn HW. Update on genetics and diabetic retinopathy. Clin Ophthalmol. 2015;2015:2175–93.Google Scholar
  46. 46.
    Kaur N, Vanita V. Association of aldose reductase gene (AKR1B1) polymorphism with diabetic retinopathy. Diabetes Res Clin Pract [Internet]. 2016;121:41–8. Available from: CrossRefGoogle Scholar
  47. 47.
    Kumaramanickavel G, Sripriya S, Ramprasad VL, Upadyay NK, Paul PG, Sharma T. Z-2 aldose reductase allele and diabetic retinopathy in India. Ophthalmic Genet. 2003;24(1):41–8.CrossRefGoogle Scholar
  48. 48.
    Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58(9):2137–47.CrossRefGoogle Scholar
  49. 49.
    Ichikawa F, Yamada K, Ishiyama-Shigemoto S, Yuan X, Nonaka K. Association of an (A-C)n dinucleotide repeat polymorphic marker at the 5′-region of the aldose reductase gene with retinopathy but not with nephropathy or neuropathy in Japanese patients with type 2 diabetes mellitus. Diabet Med. 1999;16(9):744–8.CrossRefGoogle Scholar
  50. 50.
    Ko BC, Lam KS, Wat NM, Chung SS. An (A-C)n dinucleotide repeat polymorphic marker at the 5′ end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes. 1995;44(7):727–32.CrossRefGoogle Scholar
  51. 51.
    Petrovic MG, Peterlin B, Hawlina M, Petrovic D. Aldose reductase (AC)n gene polymorphism and susceptibility to diabetic retinopathy in type 2 diabetes in Caucasians. J Diabetes Complicat. 2005;19(2):70–3.CrossRefGoogle Scholar
  52. 52.
    Li Q, Xie P, Huang J, Gu Y, Zeng W, Song H. Polymorphisms and functions of the aldose reductase gene 5′ regulatory region in Chinese patients with type 2 diabetes mellitus. Chin Med J. 2002;115:209–13.Google Scholar
  53. 53.
    Ikegishi Y, Tawata M, Aida K, Onaya T. Z-4 allele upstream of the aldose reductase gene is associated with proliferative retinopathy in Japanese patients with NIDDM, and elevated luciferase gene transcription in vitro. Life Sci [Internet]. 1999;65(20):2061–70. Available from: CrossRefGoogle Scholar
  54. 54.
    Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari P, Lakshmipathy P, et al. Diabetic retinopathy: validation study of ALR2, RAGE, iNOS and TNFB gene variants in a south indian cohort. Ophthalmic Genet. 2010;31(4):244–51.CrossRefGoogle Scholar
  55. 55.
    Taverna MJ, Elgrably F, Selmi H, Selam J-L, Slama G. The T-786C and C774T endothelial nitric oxide synthase gene polymorphisms independently affect the onset pattern of severe diabetic retinopathy. Nitric Oxide Biol Chem. 2005;13(1):88–92.CrossRefGoogle Scholar
  56. 56.
    9_chapters_thesis [Internet]. Available from: Scholar
  57. 57.
    Lindholm E, Bakhtadze E, Sjogren M, Cilio CM, Agardh E, Groop L, et al. The −374 T/A polymorphism in the gene encoding RAGE is associated with diabetic nephropathy and retinopathy in type 1 diabetic patients. Diabetologia. 2006;49(11):2745–55.CrossRefGoogle Scholar
  58. 58.
    Niu W, Qi Y, Wu Z, Liu Y, Zhu D, Jin W. A meta-analysis of receptor for advanced glycation end products gene: four wellevaluated polymorphisms with diabetes mellitus. Mol Cell Endocrinol. 2012;358(1):9–17.CrossRefGoogle Scholar
  59. 59.
    Paine SK, Basu A, Mondal LK, Sen A, Choudhuri S, Chowdhury IH, et al. Association of vascular endothelial growth factor, transforming growth factor beta, and interferon gamma gene polymorphisms with proliferative diabetic retinopathy in patients with type 2 diabetes. Mol Vis. 2012;18:2749–57.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Simó-Servat O, Hernández C, Simó R. Genetics in diabetic retinopathy: current concepts and new insights. Curr Genomics. 2013;14:289–99.CrossRefGoogle Scholar
  61. 61.
    Uthra S, Raman R, Mukesh BN, Rajkumar SA, Padmaja KR, Paul PG, et al. Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmic Genet. 2008;29(1):11–5.CrossRefGoogle Scholar
  62. 62.
    Saleem S, Azam A, Maqsood SI, Muslim I, Bashir S, Fazal N, et al. Role of ACE and PAI-1 polymorphisms in the development and progression of diabetic retinopathy. PLoS One [Internet]. 2015;10(12):e0144557. Available from: CrossRefGoogle Scholar
  63. 63.
    Kankova K, Muzik J, Karaskova J, Beranek M, Hajek D, Znojil V, et al. Duration of non-insulin-dependent diabetes mellitus and the TNF-beta NcoI genotype as predictive factors in proliferative diabetic retinopathy. Ophthalmol J Int d’ophtalmologie Int J Ophthalmol Zeitschrift fur Augenheilkd. 2001;215(4):294–8.CrossRefGoogle Scholar
  64. 64.
    Kumaramanickavel G, Sripriya S, Vellanki RN, Upadyay NK, Badrinath SS, Arokiasamy T, et al. Tumor necrosis factor allelic polymorphism with diabetic retinopathy in India. Diabetes Res Clin Pract. 2001;54(2):89–94.CrossRefGoogle Scholar
  65. 65.
    Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari RP, Lakshmipathy P, et al. Protein kinase C β (PRKCB1) and pigment epithelium derived factor (PEDF) gene polymorphisms and diabetic retinopathy in a south Indian cohort. Ophthalmic Genet [Internet]. 2010;31(1):18–23. Available from: CrossRefGoogle Scholar
  66. 66.
    Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari RP, Agarwal S, et al. Diabetic retinopathy and IGF-1 gene polymorphic cytosine-adenine repeats in a Southern Indian cohort. Ophthalmic Res. 2007;39(5):294–9.CrossRefGoogle Scholar
  67. 67.
    Awata T, Inoue K, Kurihara S, Ohkubo T, Watanabe M, Inukai K, et al. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51(5):1635–9.CrossRefGoogle Scholar
  68. 68.
    Awata T, Kurihara S, Takata N, Neda T, Iizuka H, Ohkubo T, et al. Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem Biophys Res Commun 2005;333(3):679–685.Google Scholar
  69. 69.
    Ray D, Mishra M, Ralph S, Read I, Davies R, Brenchley P. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes. 2004;53(3):861–4.CrossRefGoogle Scholar
  70. 70.
    Suganthalakshmi B, Anand R, Kim R, Mahalakshmi R, Karthikprakash S, Namperumalsamy P, et al. Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol Vis. 2006;12:336–41.PubMedGoogle Scholar
  71. 71.
    Yang X, Deng Y, Gu H, Lim A, Altankhuyag A, Jia W, et al. Polymorphisms in the vascular endothelial growth factor gene and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes. Mol Vis [Internet]. 2011;17:3088–96. Available from: Google Scholar
  72. 72.
    Yuan Y, Wen Z, Guan Y, Sun Y, Yang J, Fan X, et al. The relationships between type 2 diabetic retinopathy and VEGF634G/C and VEGF-460C/T polymorphisms in Han Chinese subjects. J Diabetes Complicat. 2014;28(6):785–90.CrossRefGoogle Scholar
  73. 73.
    Demaine A, Cross D, Millward A. Polymorphisms of the aldose reductase gene and susceptibility to retinopathy in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci. 2000;41(13):4064–8.PubMedGoogle Scholar
  74. 74.
    Katakami N, Kaneto H, Takahara M, Matsuoka TA, Imamura K, Ishibashi F, et al. Aldose reductase C-106T gene polymorphism is associated with diabetic retinopathy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract [Internet]. 2011;92(3):e57–60. Available from:, [cited 2018 Feb 27]CrossRefGoogle Scholar
  75. 75.
    Cao M, Tian Z, Zhang L, Liu R, Guan Q, Jiang J. Genetic association of AKR1B1 gene polymorphism rs759853 with diabetic retinopathy risk: a meta-analysis. Gene [Internet]. 2018;676:73–8. Available from:
  76. 76.
    Albrecht EWJA, Stegeman CA, Heeringa P, Henning RH, van Goor H. Protective role of endothelial nitric oxide synthase. J Pathol [Internet]. 2002;199(1):8–17. Available from: CrossRefGoogle Scholar
  77. 77.
    Li C, Dong Y, Lü W. The association between polymorphism of endothelial nitric oxide synthase gene and diabetic nephropathy. Zhonghua nei ke za zhi [Internet]. 2001;40(11):729–32. Available from: Google Scholar
  78. 78.
    Taverna MJ, Sola A, Guyot-Argenton C, Pacher N, Bruzzo F, Chevalier A, et al. eNOS4 polymorphism of the endothelial nitric oxide synthase predicts risk for severe diabetic retinopathy. Diabet Med. 2002;19(3):240–5.CrossRefGoogle Scholar
  79. 79.
    Kumaramanickavel G, Ramprasad VL, Sripriya S, Upadyay NK, Paul PG, Sharma T. Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J Diabetes Complications [Internet]. 2002;16(6):391–4. Available from:, [cited 2018 Feb 27]CrossRefGoogle Scholar
  80. 80.
    Vanita V. Association of RAGE (p.Gly82Ser) and MnSOD (p.Val16Ala) polymorphisms with diabetic retinopathy in T2DM patients from North India. Diabetes Res Clin Pract. 2014;104(1):155–62.CrossRefGoogle Scholar
  81. 81.
    Matsumoto A, Iwashima Y, Abiko A, Morikawa A, Sekiguchi M, Eto M, et al. Detection of the association between a deletion polymorphism in the gene encoding angiotensin I-converting enzyme and advanced diabetic retinopathy. Diabetes Res Clin Pract. 2000;50(3):195–202.CrossRefGoogle Scholar
  82. 82.
    Imperatore G, Hanson RL, Pettitt DJ, Kobes S, Bennett PH, Knowler WC. Sib-pair linkage analysis for susceptibility genes for microvascular complications among pima Indians with type 2 diabetes. Pima Diabetes Genes Group Diabetes [Internet]. 1998;47(5):821–30. Available from: Google Scholar
  83. 83.
    Looker HC, Nelson RG, Chew E, Klein R, Klein BEK, Knowler WC, et al. Genome-wide linkage analyses to identify Loci for diabetic retinopathy. Diabetes. 2007;56(4):1160–6.CrossRefGoogle Scholar
  84. 84.
    Hallman DM, Boerwinkle E, Gonzalez VH, Klein BEK, Klein R, Hanis CL. A genome-wide linkage scan for diabetic retinopathy susceptibility genes in Mexican Americans with type 2 diabetes from Starr County. Texas Diabetes. 2007;56(4):1167–73.CrossRefGoogle Scholar
  85. 85.
    Grassi MA, Tikhomirov A, Ramalingam S, Below JE, Cox NJ, Nicolae DL. Genome-wide meta-analysis for severe diabetic retinopathy. Hum Mol Genet [Internet]. 2011;20(12):2472–81. Available from: CrossRefGoogle Scholar
  86. 86.
    Huang Y-C, Lin J-M, Lin H-J, Chen C-C, Chen S-Y, Tsai C-H, et al. Genome-wide association study of diabetic retinopathy in a Taiwanese population. Ophthalmology. 2011;118(4):642–8.CrossRefGoogle Scholar
  87. 87.
    Awata T, Yamashita H, Kurihara S, Morita-Ohkubo T, Miyashita Y, Katayama S, et al. A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA. PLoS One. 2014;9(11):e111715.CrossRefGoogle Scholar
  88. 88.
    Simo R, Sundstrom JM, Antonetti DA. Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care. 2014;37(4):893–9.CrossRefGoogle Scholar
  89. 89.
    Zhang L, Xia H, Han Q, Chen B. Effects of antioxidant gene therapy on the development of diabetic retinopathy and the metabolic memory phenomenon. Graefes Arch Clin Exp Ophthalmol. 2015;253(2):249–59.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Siddhita Nare
    • 1
  • Sunita Mohan
    • 1
  • Uthra Satagopan
    • 2
  • Sundaram Natarajan
    • 1
  • Govindasamy Kumaramanickavel
    • 1
  1. 1.Aditya Jyot Foundation for Twinkling Little EyesMumbaiIndia
  2. 2.Centre for Medical GeneticsChennaiIndia

Personalised recommendations