Skip to main content

Stargardt Disease in Asian Population

  • Chapter
  • First Online:
Advances in Vision Research, Volume II

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

Abstract

Stargardt disease 1 (STGD1; MIM 248200) is the most prevalent inherited macular dystrophy, which is an autosomal recessive condition caused by pathogenic variants in the ABCA4 gene (ATP-binding cassette subfamily A member 4; MIM 601691). Clinical and molecular genetic investigations of STGD1/ABCA4 have been intensively performed over the last 10 years, and understanding the underlying pathophysiology promotes ongoing and planned human clinical therapeutic trials. We herein describe the phenotypic and genotypic characteristics of the disease, pathogenesis, therapeutic approaches, and recent findings in Asian population.

East Asian Inherited Retinal Disease Society (EAIRDs)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet. 2003;40(9):641–50.

    Article  CAS  Google Scholar 

  2. Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101(1):25–30.

    Article  Google Scholar 

  3. Ueber Familiaere KS. progressive degeneration in der Makulagegend des Auges. Graefes Arch Clin Exp Ophthalmol. 1909;71:534–49.

    Article  Google Scholar 

  4. Fujinami K, Lois N, Davidson AE, et al. A longitudinal study of Stargardt disease: clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol. 2013;155(6):1075–88.

    Article  Google Scholar 

  5. Fujinami K, Lois N, Mukherjee R, et al. A longitudinal study of Stargardt disease: quantitative assessment of Fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci. 2013;54(13):8181–90.

    Article  Google Scholar 

  6. Burke TR, Tsang SH. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalmic Genet. 2011;32(3):165–74.

    Article  CAS  Google Scholar 

  7. Fishman GA, Stone EM, Grover S, et al. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene. Arch Ophthalmol. 1999;117(4):504–10.

    Article  CAS  Google Scholar 

  8. Lois N, Holder GE, Bunce C, et al. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch Ophthalmol. 2001;119(3):359–69.

    Article  CAS  Google Scholar 

  9. Yatsenko AN, Shroyer NF, Lewis RA, Lupski JR. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum Genet. 2001;108(4):346–55.

    Article  CAS  Google Scholar 

  10. Fujinami K, Akahori M, Fukui M, et al. Stargardt disease with preserved central vision: identification of a putative novel mutation in ATP-binding cassette transporter gene. Acta Ophthalmol. 2011;89(3):E297–E8.

    Article  Google Scholar 

  11. Fujinami K, Sergouniotis PI, Davidson AE, et al. The clinical effect of homozygous ABCA4 Alleles in 18 patients. Ophthalmology. 2013;120(11):2324–31.

    Article  Google Scholar 

  12. Fujinami K, Sergouniotis PI, Davidson AE, et al. Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol. 2013;156(3):487–501.

    Article  CAS  Google Scholar 

  13. Singh R, Fujinami K, Chen LL, et al. Longitudinal follow-up of siblings with a discordant Stargardt disease phenotype. Acta Ophthalmol. 2014;92(4):e331–e2.

    Article  Google Scholar 

  14. Fujinami K, Zernant J, Chana RK, et al. Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology. 2015;122(2):326–34.

    Article  Google Scholar 

  15. Fujinami K, Singh R, Carroll J, et al. Fine central macular dots associated with childhood-onset Stargardt disease. Acta Ophthalmol. 2014;92(2):e157–9.

    Article  Google Scholar 

  16. Fakin A, Robson AG, Chiang JP, et al. The effect on retinal structure and function of 15 specific ABCA4 mutations: a detailed examination of 82 Hemizygous patients. Invest Ophthalmol Vis Sci. 2016;57(14):5963–73.

    Article  CAS  Google Scholar 

  17. Fakin A, Robson AG, Fujinami K, et al. Phenotype and progression of retinal degeneration associated with Nullizigosity of ABCA4. Invest Ophthalmol Vis Sci. 2016;57(11):4668–78.

    Article  CAS  Google Scholar 

  18. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15(3):236–46.

    Article  CAS  Google Scholar 

  19. Jaakson K, Zernant J, Kulm M, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22(5):395–403.

    Article  CAS  Google Scholar 

  20. Briggs CE, Rucinski D, Rosenfeld PJ, et al. Mutations in ABCR (ABCA4) in patients with Stargardt macular degeneration or cone-rod degeneration. Invest Ophthalmol Vis Sci. 2001;42(10):2229–36.

    CAS  PubMed  Google Scholar 

  21. Klevering BJ, Yzer S, Rohrschneider K, et al. Microarray-based mutation analysis of the ABCA4 (ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa. Eur J Hum Genet. 2004;12(12):1024–32.

    Article  CAS  Google Scholar 

  22. Michaelides M, Chen LL, Brantley MA, et al. ABCA4 mutations and discordant ABCA4 alleles in patients and siblings with bull’s-eye maculopathy. Br J Ophthalmol. 2007;91(12):1650–5.

    Article  CAS  Google Scholar 

  23. Ernest PJG, Boon CJF, Klevering BJ, et al. Outcome of ABCA4 microarray screening in routine clinical practice. Mol Vis. 2009;15(300-01):2841–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zernant J, Schubert C, Im KM, et al. Analysis of the ABCA4 gene by next-generation sequencing. Invest Ophthalmol Vis Sci. 2011;52(11):8479–87.

    Article  CAS  Google Scholar 

  25. Fujinami K, Zernant J, Chana RK, et al. ABCA4 gene screening by next-generation sequencing in a British Cohort. Invest Ophthalmol Vis Sci. 2013;54(10):6662–74.

    Article  CAS  Google Scholar 

  26. Zernant J, Xie Y, Ayuso C, et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum Mol Genet. 2014;23(25):6797–806.

    Article  CAS  Google Scholar 

  27. Scholl HP, Strauss RW, Singh MS, et al. Emerging therapies for inherited retinal degeneration. Sci Transl Med. 2016;8(368):368rv6.

    Article  Google Scholar 

  28. Smith J, Ward D, Michaelides M, et al. New and emerging technologies for the treatment of inherited retinal diseases: a horizon scanning review. Eye. 2015;29(9):1131–40.

    Article  CAS  Google Scholar 

  29. Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  Google Scholar 

  30. Zernant J, Collison FT, Lee W, et al. Genetic and clinical analysis of ABCA4-associated disease in African American patients. Hum Mutat. 2014;35(10):1187–94.

    Article  CAS  Google Scholar 

  31. Huang L, Xiao X, Li S, et al. Molecular genetics of cone-rod dystrophy in Chinese patients: New data from 61 probands and mutation overview of 163 probands. Exp Eye Res. 2016;146:252–8.

    Article  CAS  Google Scholar 

  32. Oishi M, Oishi A, Gotoh N, et al. Next-generation sequencing-based comprehensive molecular analysis of 43 Japanese patients with cone and cone-rod dystrophies. Mol Vis. 2016;22:150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee W, Schuerch K, Zernant J, et al. Genotypic spectrum and phenotype correlations of ABCA4-associated disease in patients of south Asian descent. Eur J Hum Genet. 2017;25(6):735–43.

    Article  CAS  Google Scholar 

  34. Prakash, G et al. Asian Eye Genetics Consortium (AEGC). Adv Vision Res Vol I Genet Eye Res Asia Pac. 2017;1(1):1–8.

    Google Scholar 

  35. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;17(1):122.

    Article  CAS  Google Scholar 

  36. Wiszniewski W, Zaremba CM, Yatsenko AN, et al. ABCA4 mutations causing mislocalization are found frequently in patients with severe retinal dystrophies. Hum Mol Genet. 2005;14(19):2769–78.

    Article  CAS  Google Scholar 

  37. Zernant J, Lee W, Collison FT, et al. Frequent hypomorphic alleles account for a significant fraction of ABCA4 disease and distinguish it from age-related macular degeneration. J Med Genet. 2017;54(6):404–12.

    Article  CAS  Google Scholar 

  38. Cideciyan AV, Aleman TS, Swider M, et al. Mutations in ABCA4 result in accumulation of lipofuscin before slowing of the retinoid cycle: a reappraisal of the human disease sequence. Hum Mol Genet. 2004;13(5):525–34.

    Article  CAS  Google Scholar 

  39. Tsybovsky Y, Molday RS, Palczewski K. The ATP-binding cassette transporter ABCA4: structural and functional properties and role in retinal disease. In: Lambris JD, Adamis AP, editors. Inflammation and retinal disease: complement biology and pathology, vol. 703. Berlin: Springer; 2010.

    Google Scholar 

  40. Charbel Issa P, Barnard AR, Singh MS, et al. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease--correlation with accumulation of A2E, retinal function, and histology. Invest Ophthalmol Vis Sci. 2013;54(8):5602–12.

    Article  Google Scholar 

  41. Sun H, Nathans J. ABCR: rod photoreceptor-specific ABC transporter responsible for Stargardt disease. Methods Enzymol. 2000;315:879–97.

    Article  CAS  Google Scholar 

  42. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal-pathobiology. Exp Eye Res. 2005;80(5):595–606.

    Article  CAS  Google Scholar 

  43. Radu RA, Mata NL, Bagla A, Travis GH. Light exposure stimulates formation of A2E oxiranes in a mouse model of Stargardt’s macular degeneration. Proc Natl Acad Sci U S A. 2004;101(16):5928–33.

    Article  CAS  Google Scholar 

  44. Smith RT, Gomes NL, Barile G, et al. Lipofuscin and autofluorescence metrics in progressive STGD. Invest Ophthalmol Vis Sci. 2009;50(8):3907–14.

    Article  Google Scholar 

  45. Sparrow JR, Fishkin N, Zhou JL, et al. A2E, a byproduct of the visual cycle. Vis Res. 2003;43(28):2983–90.

    Article  CAS  Google Scholar 

  46. Weng J, Mata NL, Azarian SM, et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell. 1999;98(1):13–23.

    Article  CAS  Google Scholar 

  47. Strauss RW, Ho A, Munoz B, et al. The natural history of the progression of atrophy secondary to Stargardt disease (ProgStar) studies design and baseline characteristics: progstar report no. 1. Ophthalmology. 2016;123(4):817–28.

    Article  Google Scholar 

  48. Khan KN, Kasilian M, Mahroo OAR, et al. Early patterns of macular degeneration in ABCA4-associated retinopathy. Ophthalmology. 2018;125:735–46.

    Article  Google Scholar 

  49. van Huet RAC, Bax NM, Westeneng-Van Haaften SC, et al. Foveal sparing in Stargardt disease. Invest Ophthalmol Vis Sci. 2014;55(11):7467–78.

    Article  Google Scholar 

  50. Westeneng-van Haaften SC, Boon CJF, Cremers FPM, et al. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012;119(6):1199–210.

    Article  Google Scholar 

  51. Jiang F, Pan Z, Xu K, et al. Screening of ABCA4 gene in a Chinese Cohort with Stargardt disease or cone-rod dystrophy with a report on 85 novel mutations. Invest Ophthalmol Vis Sci. 2016;57(1):145–52.

    Article  CAS  Google Scholar 

  52. Fukui T, Yamamoto S, Nakano K, et al. ABCA4 gene mutations in Japanese patients with Stargardt disease and retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002;43(9):2819–24.

    PubMed  Google Scholar 

  53. Nakao T, Tsujikawa M, Sawa M, et al. Foveal sparing in patients with Japanese Stargardt’s disease and good visual acuity. Jpn J Ophthalmol. 2012;56(6):584–8.

    Article  Google Scholar 

  54. Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Reports. 2015;4(5):860–72.

    Article  CAS  Google Scholar 

  55. Battu R, Verma A, Hariharan R, et al. Identification of novel mutations in ABCA4 gene: clinical and genetic analysis of Indian patients with Stargardt disease. Biomed Res Int. 2015;2015:940864.

    Article  Google Scholar 

  56. Guymer RH, Heon E, Lotery AJ, et al. Variation of codons 1961 and 2177 of the Stargardt disease gene is not associated with age-related macular degeneration. Arch Ophthalmol. 2001;119(5):745–51.

    Article  CAS  Google Scholar 

  57. Burke TR, Fishman GA, Zernant J, et al. Retinal phenotypes in patients homozygous for the G1961E mutation in the ABCA4 gene. Invest Ophthalmol Vis Sci. 2012;53(8):4458–67.

    Article  CAS  Google Scholar 

  58. Allocca M, Doria M, Petrillo M, et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest. 2008;118(5):1955–64.

    Article  CAS  Google Scholar 

  59. Dalkara D, Goureau O, Marazova K, Sahel J-A. Let there be light: gene and cell therapy for blindness. Hum Gene Ther. 2016;27(2):134–47.

    Article  CAS  Google Scholar 

  60. Audo IS, Weleber RG, Stout T, et al. Early findings in a phase I/IIa clinical program for Stargardt disease (STGD1, MIM #248200). Invest Ophthalmol Vis Sci. 2015;56(7)

    Google Scholar 

  61. Travis GH, Golczak M, Moise AR, Palczewski K. Diseases caused by defects in the visual cycle: retinoids as potential therapeutic agents. Annu Rev Pharmacol Toxicol. 2007;47:469–512.

    Article  CAS  Google Scholar 

  62. Dugel PU, Novack RL, Csaky KG, et al. Phase ii, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration. Retina. 2015;35(6):1173–83.

    Article  CAS  Google Scholar 

  63. Kubota R, Al-Fayoumi S, Mallikaarjun S, et al. Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina. 2014;34(3):603–9.

    Article  CAS  Google Scholar 

  64. Kubota R, Boman NL, David R, et al. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina. 2012;32(1):183–8.

    Article  Google Scholar 

  65. Kaufman Y, Ma L, Washington I. Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem. 2011;286(10):7958–65.

    Article  CAS  Google Scholar 

  66. Charbel Issa P, Barnard AR, Herrmann P, et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A. 2015;112(27):8415–20.

    Article  Google Scholar 

  67. Saad L, Washington I. Can vitamin A be Improved to prevent blindness due to age-related macular degeneration, Stargardt disease and other retinal dystrophies? In: Rickman CB, MM LV, Anderson RE, et al., editors. Retinal degenerative diseases: mechanisms and experimental therapy, vol. 854. New York: Springer; 2016. p. 862.

    Chapter  Google Scholar 

Download references

Acknowledgement

We are grateful to Prof Michel Michaelides, Prof Yozo Miyake, Dr Kazushige Tsunoda, Prof Takeshi Iwata, Prof Graham E. Holder, Prof Anthony T. Moore, Prof Andrew R. Webster, Prof Anthony G. Robson, Prof Andrew Webster, Dr Rupert W Strauss, Dr Preena Tanna, Dr Kamron N. Khan, Dr Ana Fakin, Prof Hendrik P. N. Scholl, Prof Shiying Li, Prof Ruifang Sui, Prof Se Joon Woo, Kwangsic Joo, Dr Panagiotis Sergouniotis, Dr Eva Lenassi, Dr Toshihide Kurihara, and Prof Kazuo Tsubota for the data collection and their insightful comments.

Funding

Kaoru Fujinami is supported by Grant-in-Aid for Young Scientists (A) and Fund for the Promotion of Joint International Research, Fostering Joint International Research, the Ministry of Education, Culture, Sports, Science and Technology (Japan); the Japan Agency for Medical Research and Development (Japan); the Specified Disease Research Program on Intractable Diseases, the Ministry of Health Labour and Welfare (Japan); National Hospital Organization Network Research Fund (Japan) ; Foundation Fighting Blindness Career Development Award Clinical Research Fellowship Program (USA); and the Great Britain Sasakawa Foundation, Butterfield Awards for UK–Japan collaboration in medical research and public health practice (UK).

The sponsor or funding organisation had no role in the design or conduct of this research.

Conflict of Interest

Liu X, Fujinami YY, Lizhu Y, and Arno G declare that they have no conflict of interest.

Financial Disclosures

Fujinami K has received research grants from Astellas Pharma Inc., and Foundation Fighting Blindness. Fujinami K has received a speaker honorarium from Santen Pharmaceutical Co., Ltd., Astellas Pharma Inc., Japanese Ophthalmological Society, and Japanese Retinitis Pigmentosa Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Fujinami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, X., (Yokokawa) Fujinami, Y., Yang, L., Arno, G., Fujinami, K. (2019). Stargardt Disease in Asian Population. In: Prakash, G., Iwata, T. (eds) Advances in Vision Research, Volume II. Essentials in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-13-0884-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0884-0_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0883-3

  • Online ISBN: 978-981-13-0884-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics