Unique Patient Populations in Asia for Genetic Eye Research

  • Himshikha Bhutani
  • Neel Kamal Sharma
  • Akshay Anand
Part of the Essentials in Ophthalmology book series (ESSENTIALS)


DNA level similarities within the human race may have far-reaching consequences, but environment is a major factor determining the final outcome of genetics. It is therefore mostly agreed that individual population study should be an integral part of any major research programme. Asia is the most populated continent on Earth, and with the immense diversity that it holds, it is essential to identify unique patient populations for efficient genetic eye research. Consanguineous marriages are common in many Asian countries, and their consequences hold prevalence in the field of medical genetics. Novel ocular pathways have been suggested by ocular genetic conditions thus far unique to the region. Population-specific genetic intervention is important for better diagnosis and management of eye diseases. Each population is accompanied by a unique patient data set and needs elaborate and well divided study. Area wise description of patient population in Asia for genetic eye research has been provided in the following chapter.


Population Genetics Asia Eye diseases Polymorphism 


Compliance with Ethical Requirements

Himshikha Bhutani, Neel Kamal Sharma and Akshay Anand declare that they have no conflict of interest.

No human or animal studies were performed by the authors for this book chapter.


  1. 1.
    Jorde LB, Bamshad M, Rogers AR. Using mitochondrial and nuclear DNA markers to reconstruct human evolution. BioEssays. 1998;20(2):126–36.CrossRefGoogle Scholar
  2. 2.
    Thorne AG, Wolpoff MH. The multiregional evolution of humans. Sci Am Spec Ed New Look Hum Evol. 2003;13(2):46–53.Google Scholar
  3. 3.
    Mets MB, Maumenee IH. The eye and the chromosome. Surv Ophthalmol. 1983;28(1):20–32.CrossRefGoogle Scholar
  4. 4.
    MacDonald IM, Tran M, Musarella MA. Ocular genetics: current understanding. Surv Ophthalmol. 2004;49(2):159–96.CrossRefGoogle Scholar
  5. 5.
    Ganesh A, Al-Mujaini A. Ocular genetics: a sub-specialty service for genetic eye diseases. Oman Med J. 2013;28(1):1–2.CrossRefGoogle Scholar
  6. 6.
    Musarella MA. Gene mapping of ocular diseases. Surv Ophthalmol. 1992;36(4):285–312.CrossRefGoogle Scholar
  7. 7.
    Bamshad MJ, Watkins WS, Dixon ME, Jorde LB, Rao BB, Naidu JM, Ravi Prasad BV, Rasanayagam A, Hammer MF. Female gene flow stratifies Hindu castes. Nature. 1998;395:651–2.CrossRefGoogle Scholar
  8. 8.
    Bhatti S, Aslamkhan M, Attimonelli M, Abbas S, Aydin HH. Mitochondrial DNA variation in the Sindh population of Pakistan. Aust J Forensic Sci. 2017;49(2):201–16.CrossRefGoogle Scholar
  9. 9.
    Zhang F, Su B, Zhang Y, Jin L. Genetic studies of human diversity in East Asia. Philos Trans R Soc Lond Ser B Biol Sci. 2007;362(1482):987–96.CrossRefGoogle Scholar
  10. 10.
    Lim ET, Wurtz P, Havulinna AS, Palta P, Tukiainen T, et al for the Sequencing Initiative Suomi (SISu) Project. Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population. PLoS Genet. 2014;10(7):e1004494 [ecollection].Google Scholar
  11. 11.
    Arcos-Burgos M, Muenke M. Genetics of population isolates. Clin Genet. 2002;61(4):233–47.CrossRefGoogle Scholar
  12. 12.
    Mezer E, Wygnanski-Jaffe T. Ethical issues in ocular genetics. Curr Opin Opthalmol. 2009;20(5):382–6.CrossRefGoogle Scholar
  13. 13.
    Mastana SS. Unity in diversity: an overview of the genomic anthropology of India. Ann Hum Biol. 2014;41(4):287–99.CrossRefGoogle Scholar
  14. 14.
    Foster A, Resnikoff S. The impact of vision 2020 on global blindness. Eye (Lond). 2005;19(10):1133–5.CrossRefGoogle Scholar
  15. 15.
    Shtir CJ, Marjoram P, Azen S, Conti DV, Le Marchand L, Haiman CA, Varma R. Variation in genetic admixture and population structure among Latinos: the Los Angeles Latino eye study (LALES). BMC Genet. 2009;10:71.CrossRefGoogle Scholar
  16. 16.
    Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, Kowalski JW, Nguyen H, Wong TY, International Eye Disease Consortium. The prevalence of retinal vein occlusion: pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology. 2010;117(2):313–9.CrossRefGoogle Scholar
  17. 17.
    Sturm RA, Duffy DL. Human pigmentation genes under environmental selection. Genome Biol. 2012;13(9):248.CrossRefGoogle Scholar
  18. 18.
    Ulivi S, Mezzavilla M, Gasparini P. Genetics of eye colours in different rural populations on the Silk Road. Eur J Hum Genet. 2013;21(11):1320–3.CrossRefGoogle Scholar
  19. 19.
    Ang M, Chong W, Huang H, Wong TY, He M, Aung T, Mehta JS. Determinants of posterior corneal biometric measurements in a multi-ethnic Asian population. PLoS One. 2014;9(7):e101483.CrossRefGoogle Scholar
  20. 20.
    Wong TY, Loon S-C, Saw S-M. The epidemiology of age related eye diseases in Asia. Br J Ophthalmol. 2006;90(4):506–11.CrossRefGoogle Scholar
  21. 21.
    Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, Yoon D, Lee MH, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.CrossRefGoogle Scholar
  22. 22.
    Sim X, Ong RT, Suo C, Tay WT, Liu J, Ng DP, Boehnke M, Chia KS, Wong TY, Seielstad M, Teo YY, Tai ES. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7(4):e1001363.CrossRefGoogle Scholar
  23. 23.
    Abu-Amero KK, Osman EA, Mousa A, Wheeler J, Whigham B, Allingham RR, Hauser MA, Al-Obeidan SA. Screening of CYP1B1 and LTBP2 genes in Saudi families with primary congenital glaucoma: genotype-phenotype correlation. Mol Vis. 2011;17:2911–9.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Stoilov I, Akarsu AN, Sarfarazi M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet. 1997;6(4):641–7.CrossRefGoogle Scholar
  25. 25.
    Cascella R, Strafella C, Germani C, Novelli G, Ricci F, Zampatti S, Giardina E. The genetics and the genomics of primary congenital Glaucoma. Biomed Res Int. 2015;2015:321291.CrossRefGoogle Scholar
  26. 26.
    Sarfarazi M, Stoilov I. Molecular genetics of primary congenital glaucoma. Eye. 2000;14(Pt 3B):422–8.CrossRefGoogle Scholar
  27. 27.
    Al-Mansouri FA, Kanaan A, Gamra H, Khandekar R, Hashim SP, Al Qahtani O, Ahmed MF. Prevalence and determinants of Glaucoma in citizens of Qatar aged 40 years or older: a community-based survey. Middle East Afr J Ophthalmol. 2011;18(2):141–9.CrossRefGoogle Scholar
  28. 28.
    Khandekar R, Jaffer MA, Al Raisi A, Zutshi R, Mahabaleshwar M, Shah R, Choudhury AH. Oman eye study 2005: prevalence and determinants of glaucoma. East Mediterr Health J. 2008;14(6):1349–59.PubMedGoogle Scholar
  29. 29.
    Ahuja Y, Kohl S, Traboulsi EI. CNGA3 mutations in two United Arab Emirates families with achromatopsia. Mol Vis. 2008;14:1293–7.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Dolgin E. The myopia boom. Nature. 2015;519(7543):276–8.CrossRefGoogle Scholar
  31. 31.
    Li YJ, Goh L, Khor CC, Fan Q, Yu M, Han S, Sim X, Ong RT, Wong TY, Vithana EN, Yap E. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology. 2011;118(2):368–75.CrossRefGoogle Scholar
  32. 32.
    Hammond CJ, Snieder H, Gilbert CE, Spector TD. Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Vis Sci. 2001;42(6):1232–6.PubMedGoogle Scholar
  33. 33.
    Pan CW, Zheng YF, Anuar AR, Chew M, Gazzard G, Aung T, Cheng CY, Wong TY, Saw SM. Prevalence of refractive errors in a multiethnic Asian population: the Singapore epidemiology of eye disease study. Invest Ophthalmol Vis Sci. 2013;54(4):2590–8.CrossRefGoogle Scholar
  34. 34.
    Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y, Tajimi Study Group. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Opthamology. 2006;113(8):1354–62.CrossRefGoogle Scholar
  35. 35.
    Morgan IG, Ohno-Matsui K, Saw S-M. Myopia. Lancet. 2012;379(9827):1739–48.CrossRefGoogle Scholar
  36. 36.
    Foong AW, Saw SM, Loo JL, Shen S, Loon SC, Rosman M, Aung T, Tan DT, Tai ES, Wong TY. Rationale and methodology for a population-based study of eye diseases in Malay people: the Singapore Malay eye study (SiMES). Ophthalmic Epidemiol. 2007;14(1):25–35.CrossRefGoogle Scholar
  37. 37.
    Fan Q, Gemmy Cheung CM, Chen LJ, Yamashiro K, Ahn J, Laude A, Mathur R, Mun CC, Yeo IY, et al. Shared genetic variants for polypoidal choroidal vasculopathy and typical neovascular age-related macular degeneration in East Asians. J Hum Genet. 2017;62:1049. [Epub ahead of print].CrossRefPubMedGoogle Scholar
  38. 38.
    He M, Foster PJ, Johnson GJ, Khaw PT. Angle-closure glaucoma in East Asian and European people. Different diseases? Eye (Lond). 2006;20(1):3–12.CrossRefGoogle Scholar
  39. 39.
    Murray N, Norton HL, Parra EJ. Distribution of two OCA2 polymorphisms associated with pigmentation in East Asian populations. Hum Genome Var. 2015;2:15058. eCollection.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lam DSC, Pang CCP. The Asia-Pacific Society of Eye Genetics. Asia Pac Biotech News. 2002;6(2):37–8.CrossRefGoogle Scholar
  41. 41.
    Nakatsuka N, Moorjani P, Rai N, Sarkar B, Tandon A, Patterson N, Bhavani GS, et al. The promise of discovering population-specific disease-associated genes in South Asia. Nat Genet. 2017;49(9):1403–7.CrossRefGoogle Scholar
  42. 42.
    Indian Genome Variation Consortium. Genetic landscape of the people of India: a canvas for disease gene exploration. J Genet. 2008;87(1):3–20.CrossRefGoogle Scholar
  43. 43.
    Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. Genetic structure of human populations. Science. 2002;298(5602):2381–5.CrossRefGoogle Scholar
  44. 44.
    Gemmy Cheung CM, Li X, Cheng CY, Zheng Y, Mitchell P, Wang JJ, Jonas JB, Nangia V, Wong TY. Prevalence and risk factors for age-related macular degeneration in Indians: a comparative study in Singapore and India. Am J Ophthalmol. 2013;155(4):764–73.CrossRefGoogle Scholar
  45. 45.
    Azam M, Collin RW, Shah ST, Shah AA, Khan MI, Hussain A, Sadeque A, Strom TM, Thiadens AA, Roosing S, den Hollander AI, Cremers FP, Qamar R. Novel CNGA3 and CNGB3 mutations in two Pakistani families with achromatopsia. Mol Vis. 2010;16:774–81.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Himshikha Bhutani
    • 1
  • Neel Kamal Sharma
    • 2
  • Akshay Anand
    • 3
  1. 1.Alumna, Neuroscience Research Laboratory, Department of NeurologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  2. 2.Armed Forces Radiobiology Research InstituteUniformed Services University of the Health SciencesBethesdaUSA
  3. 3.Neuroscience Research Laboratory, Department of NeurologyPostgraduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations