Cyanobacterial Enzymes for Bioalkane Production

  • Munehito Arai
  • Yuuki Hayashi
  • Hisashi Kudo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1080)


Cyanobacterial biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based fuels. Key enzymes for bioalkane production in cyanobacteria are acyl-ACP reductase (AAR) and aldehyde-deformylating oxygenase (ADO). AAR catalyzes the reduction of the fatty acyl-ACP/CoA substrates to fatty aldehydes, which are then converted into alkanes/alkenes by ADO. These enzymes have been widely used for biofuel production by metabolic engineering of cyanobacteria and other organisms. However, both proteins, particularly ADO, have low enzymatic activities, and their catalytic activities are desired to be improved for use in biofuel production. Recently, progress has been made in the basic sciences and in the application of AAR and ADO in alkane production. This chapter provides an overview of recent advances in the study of the structure and function of AAR and ADO, protein engineering of these enzymes for improving activity and modifying substrate specificities, and examples of metabolic engineering of cyanobacteria and other organisms using AAR and ADO for biofuel production.


Acyl-ACP reductase Aldehyde-deformylating oxygenase Alkanes Cyanobacteria 



This work was supported by Grants-in-Aids for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by the Institute for Fermentation, Osaka.


  1. 1.
    Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328CrossRefGoogle Scholar
  2. 2.
    Kolattukudy PE (1968) Biosynthesis of surface lipids. Biosynthesis of long-chain hydrocarbons and waxy esters is discussed. Science 159:498–505CrossRefGoogle Scholar
  3. 3.
    Marsh EN, Waugh MW (2013) Aldehyde decarbonylases: enigmatic enzymes of hydrocarbon biosynthesis. ACS Catal 3:2515–2521CrossRefGoogle Scholar
  4. 4.
    Buist PH (2007) Exotic biomodification of fatty acids. Nat Prod Rep 24:1110–1127CrossRefGoogle Scholar
  5. 5.
    Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109:14858–14863CrossRefGoogle Scholar
  6. 6.
    Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80CrossRefGoogle Scholar
  7. 7.
    Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562CrossRefGoogle Scholar
  8. 8.
    Warui DM, Li N, Norgaard H, Krebs C, Bollinger JM Jr, Booker SJ (2011) Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133:3316–3319CrossRefGoogle Scholar
  9. 9.
    Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51:7908–7916CrossRefGoogle Scholar
  10. 10.
    Eser BE, Das D, Han J, Jones PR, Marsh EN (2012) Correction to oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 51:5703CrossRefGoogle Scholar
  11. 11.
    Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110:3191–3196CrossRefGoogle Scholar
  12. 12.
    Coates RC, Podell S, Korobeynikov A, Lapidus A, Pevzner P, Sherman DH, Allen EE, Gerwick L, Gerwick WH (2014) Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS One 9:e85140CrossRefGoogle Scholar
  13. 13.
    Winters K, Parker PL, Van Baalen C (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163:467–468CrossRefGoogle Scholar
  14. 14.
    Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in a-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77:4264–4267CrossRefGoogle Scholar
  15. 15.
    Klähn S, Baumgartner D, Pfreundt U, Voigt K, Schon V, Steglich C, Hess WR (2014) Alkane biosynthesis genes in cyanobacteria and their transcriptional organization. Front Bioeng Biotechnol 2:24CrossRefGoogle Scholar
  16. 16.
    Khara B, Menon N, Levy C, Mansell D, Das D, Marsh EN, Leys D, Scrutton NS (2013) Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase. Chembiochem 14:1204–1208CrossRefGoogle Scholar
  17. 17.
    Buer BC, Paul B, Das D, Stuckey JA, Marsh EN (2014) Insights into substrate and metal binding from the crystal structure of cyanobacterial aldehyde deformylating oxygenase with substrate bound. ACS Chem Biol 9:2584–2593CrossRefGoogle Scholar
  18. 18.
    Jia C, Li M, Li J, Zhang J, Zhang H, Cao P, Pan X, Lu X, Chang W (2015) Structural insights into the catalytic mechanism of aldehyde-deformylating oxygenases. Protein Cell 6:55–67CrossRefGoogle Scholar
  19. 19.
    Wang Q, Bao L, Jia C, Li M, Li JJ, Lu X (2017) Identification of residues important for the activity of aldehyde-deformylating oxygenase through investigation into the structure-activity relationship. BMC Biotechnol 17:31CrossRefGoogle Scholar
  20. 20.
    Park AK, Kim IS, Jeon BW, Roh SJ, Ryu MY, Baek HR, Jo SW, Kim YS, Park H, Lee JH, Yoon HS, Kim HW (2016) Crystal structures of aldehyde deformylating oxygenase from Limnothrix sp. KNUA012 and Oscillatoria sp. KNUA011. Biochem Biophys Res Commun 477:395–400CrossRefGoogle Scholar
  21. 21.
    Krebs C, Bollinger JM Jr, Booker SJ (2011) Cyanobacterial alkane biosynthesis further expands the catalytic repertoire of the ferritin-like ‘di-iron-carboxylate’ proteins. Curr Opin Chem Biol 15:291–303CrossRefGoogle Scholar
  22. 22.
    Das D, Eser BE, Han J, Sciore A, Marsh EN (2011) Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem Int Ed Eng 50:7148–7152CrossRefGoogle Scholar
  23. 23.
    Rajakovich LJ, Norgaard H, Warui DM, Chang WC, Li N, Booker SJ, Krebs C, Bollinger JM Jr, Pandelia ME (2015) Rapid reduction of the diferric-peroxyhemiacetal intermediate in aldehyde-deformylating oxygenase by a cyanobacterial ferredoxin: evidence for a free-radical mechanism. J Am Chem Soc 137:11695–11709CrossRefGoogle Scholar
  24. 24.
    Waugh MW, Marsh EN (2014) Solvent isotope effects on alkane formation by cyanobacterial aldehyde deformylating oxygenase and their mechanistic implications. Biochemistry 53:5537–5543CrossRefGoogle Scholar
  25. 25.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  26. 26.
    Pandelia ME, Li N, Norgaard H, Warui DM, Rajakovich LJ, Chang WC, Booker SJ, Krebs C, Bollinger JM Jr (2013) Substrate-triggered addition of dioxygen to the diferrous cofactor of aldehyde-deformylating oxygenase to form a diferric-peroxide intermediate. J Am Chem Soc 135:15801–15812CrossRefGoogle Scholar
  27. 27.
    Hayashi Y, Yasugi F, Arai M (2015) Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One 10:e0122217CrossRefGoogle Scholar
  28. 28.
    Bao L, Li JJ, Jia C, Li M, Lu X (2016) Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnol Biofuels 9:185CrossRefGoogle Scholar
  29. 29.
    O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662CrossRefGoogle Scholar
  30. 30.
    Warui DM, Pandelia ME, Rajakovich LJ, Krebs C, Bollinger JM Jr, Booker SJ (2015) Efficient delivery of long-chain fatty aldehydes from the Nostoc punctiforme acyl-acyl carrier protein reductase to its cognate aldehyde-deformylating oxygenase. Biochemistry 54:1006–1015CrossRefGoogle Scholar
  31. 31.
    Das D, Ellington B, Paul B, Marsh EN (2014) Mechanistic insights from reaction of α-oxiranyl-aldehydes with cyanobacterial aldehyde deformylating oxygenase. ACS Chem Biol 9:570–577CrossRefGoogle Scholar
  32. 32.
    Eser BE, Das D, Han J, Jones PR, Marsh EN (2011) Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50:10743–10750CrossRefGoogle Scholar
  33. 33.
    Zhang J, Lu X, Li JJ (2013) Conversion of fatty aldehydes into alk(a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol Biofuels 6:86CrossRefGoogle Scholar
  34. 34.
    Wang Q, Huang X, Zhang J, Lu X, Li S, Li JJ (2014) Engineering self-sufficient aldehyde deformylating oxygenases fused to alternative electron transfer systems for efficient conversion of aldehydes into alkanes. Chem Commun (Camb) 50:4299–4301CrossRefGoogle Scholar
  35. 35.
    Li N, Norgaard H, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr (2011) Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 133:6158–6161CrossRefGoogle Scholar
  36. 36.
    Patra T, Manna S, Maiti D (2011) Metal-mediated deformylation reactions: synthetic and biological avenues. Angew Chem Int Ed Eng 50:12140–12142CrossRefGoogle Scholar
  37. 37.
    Paul B, Das D, Ellington B, Marsh EN (2013) Probing the mechanism of cyanobacterial aldehyde decarbonylase using a cyclopropyl aldehyde. J Am Chem Soc 135:5234–5237CrossRefGoogle Scholar
  38. 38.
    Wang C, Zhao C, Hu L, Chen H (2016) Calculated mechanism of cyanobacterial aldehyde-deformylating oxygenase: asymmetric aldehyde activation by a symmetric diiron cofactor. J Phys Chem Lett 7:4427–4432CrossRefGoogle Scholar
  39. 39.
    Aukema KG, Makris TM, Stoian SA, Richman JE, Munck E, Lipscomb JD, Wackett LP (2013) Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes. ACS Catal 3:2228–2238CrossRefGoogle Scholar
  40. 40.
    Coursolle D, Lian J, Shanklin J, Zhao H (2015) Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Mol Biosyst 11:2464–2472CrossRefGoogle Scholar
  41. 41.
    Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69CrossRefGoogle Scholar
  42. 42.
    Cao YX, Xiao WH, Liu D, Zhang JL, Ding MZ, Yuan YJ (2015) Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab Eng 29:113–123CrossRefGoogle Scholar
  43. 43.
    Kang MK, Zhou YJ, Buijs NA, Nielsen J (2017) Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Factories 16:74CrossRefGoogle Scholar
  44. 44.
    Patrikainen P, Carbonell V, Thiel K, Aro EM, Kallio P (2017) Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli. Metab Eng Commun 5:9–18CrossRefGoogle Scholar
  45. 45.
    Lin F, Das D, Lin XN, Marsh EN (2013) Aldehyde-forming fatty acyl-CoA reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme. FEBS J 280:4773–4781CrossRefGoogle Scholar
  46. 46.
    Kudo H, Nawa R, Hayashi Y, Arai M (2016) Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases. Biotechnol Biofuels 9:234CrossRefGoogle Scholar
  47. 47.
    Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T (2014) Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng 22:10–21CrossRefGoogle Scholar
  48. 48.
    Shakeel T, Fatma Z, Fatma T, Yazdani SS (2015) Heterogeneity of alkane chain length in freshwater and marine cyanobacteria. Front Bioeng Biotechnol 3:34CrossRefGoogle Scholar
  49. 49.
    Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, Kakunaka N, Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99:1521–1529CrossRefGoogle Scholar
  50. 50.
    Schirmer A, Rude M, Helman N (US20110124071A1) Methods and compositions for producing hydrocarbons. US20110124071A1; WO2011062987A2; WO2011062987A3Google Scholar
  51. 51.
    Cao YX, Xiao WH, Zhang JL, Xie ZX, Ding MZ, Yuan YJ (2016) Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab Eng 38:19–28CrossRefGoogle Scholar
  52. 52.
    Zhang L, Liang Y, Wu W, Tan X, Lu X (2016) Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase. Biotechnol Biofuels 9:80CrossRefGoogle Scholar
  53. 53.
    Rude M, Trinh N, Schirmer A, Gano J (US9683219B2) Acyl-ACP reductase with improved properties. CA2898317A1; CN105051189A; EP2946009A2; EP2946009B1; EP3103867A1; US9683219B2; US20150361454; US20160348080; WO2014113571A2; WO2014113571A3Google Scholar
  54. 54.
    Rodriguez GM, Atsumi S (2014) Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab Eng 25:227–237CrossRefGoogle Scholar
  55. 55.
    Rahman Z, Sung BH, Yi JY, Bui Le M, Lee JH, Kim SC (2014) Enhanced production of n-alkanes in Escherichia coli by spatial organization of biosynthetic pathway enzymes. J Biotechnol 192(Pt A):187–191CrossRefGoogle Scholar
  56. 56.
    Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344PubMedPubMedCentralGoogle Scholar
  57. 57.
    Kallio P, Pasztor A, Akhtar MK, Jones PR (2014) Renewable jet fuel. Curr Opin Biotechnol 26:50–55CrossRefGoogle Scholar
  58. 58.
    Kang MK, Nielsen J (2017) Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Ind Microbiol Biotechnol 44:613–622CrossRefGoogle Scholar
  59. 59.
    Xie M, Wang W, Zhang W, Chen L, Lu X (2017) Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 101:905–919CrossRefGoogle Scholar
  60. 60.
    Wang J, Zhu K (2018) Microbial production of alka(e)ne biofuels. Curr Opin Biotechnol 50:11–18CrossRefGoogle Scholar
  61. 61.
    Peramuna A, Morton R, Summers ML (2015) Enhancing alkane production in cyanobacterial lipid droplets: a model platform for industrially relevant compound production. Life (Basel) 5:1111–1126Google Scholar
  62. 62.
    Kageyama H, Waditee-Sirisattha R, Sirisattha S, Tanaka Y, Mahakhant A, Takabe T (2015) Improved alkane production in nitrogen-fixing and halotolerant cyanobacteria via abiotic stresses and genetic manipulation of alkane synthetic genes. Curr Microbiol 71:115–120CrossRefGoogle Scholar
  63. 63.
    Yoshida S, Takahashi M, Ikeda A, Fukuda H, Kitazaki C, Asayama M (2015) Overproduction and easy recovery of biofuels from engineered cyanobacteria, autolyzing multicellular cells. J Biochem 157:519–527CrossRefGoogle Scholar
  64. 64.
    Asayama M (2012) Overproduction and easy recovery of target gene products from cyanobacteria, photosynthesizing microorganisms. Appl Microbiol Biotechnol 95:683–695CrossRefGoogle Scholar
  65. 65.
    Reppas NB, Ridley CP (US7794969B1) Methods and compositions for the recombinant biosynthesis of n-alkanes. CA2766204A1; CN102597248A; CN102597248B; CN104630279A; EP2307553A2; EP2307553A4; EP2307553B1; EP2584032A2; EP2584032A3; EP2584032B1; EP2787061A1; US7794969B1; US7919303; US8101397; US8481285; US9458069; US20110009674; US20110172467; US20120095266; US20140005439; US20170051315; WO2011006137A2; WO2011006137A3Google Scholar
  66. 66.
    Butterworth PH, Bloch K (1970) Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur J Biochem 12:496–501CrossRefGoogle Scholar
  67. 67.
    Schweizer E, Hofmann J (2004) Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 68:501–517CrossRefGoogle Scholar
  68. 68.
    Rock CO, Jackowski S (2002) Forty years of bacterial fatty acid synthesis. Biochem Biophys Res Commun 292:1155–1166CrossRefGoogle Scholar
  69. 69.
    Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:17CrossRefGoogle Scholar
  70. 70.
    Song X, Yu H, Zhu K (2016) Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl Microbiol Biotechnol 100:757–767CrossRefGoogle Scholar
  71. 71.
    Fujita Y, Matsuoka H, Hirooka K (2007) Regulation of fatty acid metabolism in bacteria. Mol Microbiol 66:829–839CrossRefGoogle Scholar
  72. 72.
    Cronan JE Jr (1997) In vivo evidence that acyl coenzyme A regulates DNA binding by the Escherichia coli FadR global transcription factor. J Bacteriol 179:1819–1823CrossRefGoogle Scholar
  73. 73.
    Ichikawa S, Karita S (2015) Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases. FEMS Microbiol Lett 362:fnv202CrossRefGoogle Scholar
  74. 74.
    Crepin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101CrossRefGoogle Scholar
  75. 75.
    Sinha M, Weyda I, Sorensen A, Bruno KS, Ahring BK (2017) Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express 7:18CrossRefGoogle Scholar
  76. 76.
    Harger M, Zheng L, Moon A, Ager C, An JH, Choe C, Lai YL, Mo B, Zong D, Smith MD, Egbert RG, Mills JH, Baker D, Pultz IS, Siegel JB (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2:59–62CrossRefGoogle Scholar
  77. 77.
    Howard TP, Middelhaufe S, Moore K, Edner C, Kolak DM, Taylor GN, Parker DA, Lee R, Smirnoff N, Aves SJ, Love J (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110:7636–7641CrossRefGoogle Scholar
  78. 78.
    Foo JL, Susanto AV, Keasling JD, Leong SS, Chang MW (2017) Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 114:232–237CrossRefGoogle Scholar
  79. 79.
    Koeduka T, Matsui K, Akakabe Y, Kajiwara T (2002) Catalytic properties of rice α-oxygenase. A comparison with mammalian prostaglandin H synthases. J Biol Chem 277:22648–22655CrossRefGoogle Scholar
  80. 80.
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222PubMedPubMedCentralGoogle Scholar
  81. 81.
    Kallio P, Pasztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:4731CrossRefGoogle Scholar
  82. 82.
    Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110:87–92CrossRefGoogle Scholar
  83. 83.
    Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ (2011) Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12:44CrossRefGoogle Scholar
  84. 84.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRefGoogle Scholar
  85. 85.
    Menon N, Pasztor A, Menon BR, Kallio P, Fisher K, Akhtar MK, Leys D, Jones PR, Scrutton NS (2015) A microbial platform for renewable propane synthesis based on a fermentative butanol pathway. Biotechnol Biofuels 8:61CrossRefGoogle Scholar
  86. 86.
    Rui Z, Li X, Zhu X, Liu J, Domigan B, Barr I, Cate JH, Zhang W (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111:18237–18242CrossRefGoogle Scholar
  87. 87.
    Rui Z, Zhang W (US20160289701A1) Biosynthesis of 1-undecence and related terminal olefins. US20160289701A1; WO2015095240A2; WO2015095240A3Google Scholar
  88. 88.
    Zhu Z, Zhou YJ, Kang MK, Krivoruchko A, Buijs NA, Nielsen J (2017) Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metab Eng 44:81–88CrossRefGoogle Scholar
  89. 89.
    Rui Z, Harris NC, Zhu X, Huang W, Zhang W (2015) Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal 5:7091–7094CrossRefGoogle Scholar
  90. 90.
    Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709CrossRefGoogle Scholar
  91. 91.
    Keseler IM, Collado-Vides J, Santos-Zavaleta A, Peralta-Gil M, Gama-Castro S, Muniz-Rascado L, Bonavides-Martinez C, Paley S, Krummenacker M, Altman T, Kaipa P, Spaulding A, Pacheco J, Latendresse M, Fulcher C, Sarker M, Shearer AG, Mackie A, Paulsen I, Gunsalus RP, Karp PD (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39:D583–D590CrossRefGoogle Scholar
  92. 92.
    Fatma Z, Jawed K, Mattam AJ, Yazdani SS (2016) Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli. Metab Eng 37:35–45CrossRefGoogle Scholar
  93. 93.
    Yao L, Qi F, Tan X, Lu X (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7:94CrossRefGoogle Scholar
  94. 94.
    Kaczmarzyk D, Cengic I, Yao L, Hudson EP (2018) Diversion of the long-chain acyl-ACP pool in Synechocystis to fatty alcohols through CRISPRi repression of the essential phosphate acyltransferase PlsX. Metab Eng 45:59–66CrossRefGoogle Scholar
  95. 95.
    Kaiser BK, Carleton M, Hickman JW, Miller C, Lawson D, Budde M, Warrener P, Paredes A, Mullapudi S, Navarro P, Cross F, Roberts JM (2013) Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS One 8:e58307CrossRefGoogle Scholar
  96. 96.
    Sumiya N, Kawase Y, Hayakawa J, Matsuda M, Nakamura M, Era A, Tanaka K, Kondo A, Hasunuma T, Imamura S, Miyagishima SY (2015) Expression of cyanobacterial acyl-ACP reductase elevates the triacylglycerol level in the red alga Cyanidioschyzon merolae. Plant Cell Physiol 56:1962–1980CrossRefGoogle Scholar
  97. 97.
    Arai M (2018) Unified understanding of folding and binding mechanisms of globular and intrinsically disordered proteins. Biophys Rev 10:163–181CrossRefGoogle Scholar
  98. 98.
    Shakeel T, Gupta M, Fatma Z, Kumar R, Kumar R, Singh R, Sharma M, Jade D, Gupta D, Fatma T, Yazdani SS (2018) A consensus-guided approach yields a heat-stable alkane-producing enzyme and identifies residues promoting thermostability. J Biol Chem In pressGoogle Scholar
  99. 99.
    Fujisawa T, Narikawa R, Maeda SI, Watanabe S, Kanesaki Y, Kobayashi K, Nomata J, Hanaoka M, Watanabe M, Ehira S, Suzuki E, Awai K, Nakamura Y (2017) CyanoBase: a large-scale update on its 20th anniversary. Nucleic Acids Res 45:D551–D554CrossRefGoogle Scholar
  100. 100.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242CrossRefGoogle Scholar
  101. 101.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  102. 102.
    Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan

Personalised recommendations