Advertisement

Synthetic Gene Regulation in Cyanobacteria

  • Cheryl M. Immethun
  • Tae Seok Moon
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1080)

Abstract

Cyanobacteria are appealing hosts for green chemical synthesis due to their use of light and carbon dioxide. To optimize product yields and titers, specific and tunable regulation of the metabolic pathways is needed. Synthetic biology has increased and diversified the genetic tools available for biological process control. While early tool development focused on commonly used heterotrophs, there has been a recent expansion of tools for cyanobacteria. CRISPR-Cas9 has been used to edit the genome of cyanobacterial strains, while transcriptional regulation has been accomplished with CRISPR interference and RNA riboswitches. Promoter development has produced a significant number of transcriptional regulators, including those that respond to chemicals, environmental signals, and metabolic states. Trans-acting RNAs have been utilized for posttranscriptional and translational control. The regulation of translation initiation is beginning to be explored with ribosome binding sites and riboswitches, while protein degradation tags have been used to control expression levels. Devices built from multiple parts have also been developed to create more complex behaviors. These advances in development of synthetic cyanobacterial regulatory parts provide the groundwork for creation of new, even more sophisticated bioprocess control devices, bolstering the viability of cyanobacteria as sustainable biotechnology platforms.

Keywords

Synthetic biology Cyanobacterial gene expression CRISPR-Cas CRISPR interference Inducible promoter Metabolic sensor RNA riboswitch Terminator Trans-acting RNA Protein degradation tag Multipart device 

Notes

Acknowledgment

This work was supported by the National Science Foundation (MCB-1331194 and MCB-1714352).

References

  1. 1.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240.  https://doi.org/10.1126/science.281.5374.237 CrossRefPubMedGoogle Scholar
  2. 2.
    Waterbury JB (2006) The cyanobacteria—isolation, purification and identification. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: volume 4: bacteria: firmicutes, cyanobacteria. Springer US, New York, pp 1053–1073.  https://doi.org/10.1007/0-387-30744-3_38 CrossRefGoogle Scholar
  3. 3.
    Tandeau de Marsac N, Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Lett 104(1):119–189.  https://doi.org/10.1016/0378-1097(93)90506-W CrossRefGoogle Scholar
  4. 4.
    Formighieri C (2015) Solar-to-fuel conversion in algae and cyanobacteria. Springer, ChamCrossRefGoogle Scholar
  5. 5.
    Bandyopadhyay A, Stockel J, Min H, Sherman LA, Pakrasi HB (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139.  https://doi.org/10.1038/ncomms1139 CrossRefPubMedGoogle Scholar
  6. 6.
    Silva-Stenico ME, Kaneno R, Zambuzi FA, Vaz MG, Alvarenga DO, Fiore MF (2013) Natural products from cyanobacteria with antimicrobial and antitumor activity. Curr Pharm Biotechnol 14(9):820–828CrossRefGoogle Scholar
  7. 7.
    Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J Nat Prod 62(3):502–503.  https://doi.org/10.1021/np980444x CrossRefPubMedGoogle Scholar
  8. 8.
    Shishido TK, Humisto A, Jokela J, Liu L, Wahlsten M, Tamrakar A, Fewer DP, Permi P, Andreote AP, Fiore MF, Sivonen K (2015) Antifungal compounds from cyanobacteria. Mar Drugs 13(4):2124–2140.  https://doi.org/10.3390/md13042124 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu Y, Xu L, Cheng N, Lin L, Zhang C (2000) Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. J Appl Phycol 12(2):125–130.  https://doi.org/10.1023/a:1008132210772 CrossRefGoogle Scholar
  10. 10.
    Xiong C, O’Keefe BR, Botos I, Wlodawer A, McMahon JB (2006) Overexpression and purification of scytovirin, a potent, novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Protein Expr Purif 46(2):233–239.  https://doi.org/10.1016/j.pep.2005.09.019 CrossRefPubMedGoogle Scholar
  11. 11.
    Holman BW, Malau-Aduli AE (2013) Spirulina as a livestock supplement and animal feed. J Anim Physiol Anim Nutr (Berl) 97(4):615–623.  https://doi.org/10.1111/j.1439-0396.2012.01328.x CrossRefGoogle Scholar
  12. 12.
    Jespersen L, Strømdahl LD, Olsen K, Skibsted LH (2005) Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur Food Res Technol 220(3):261–266.  https://doi.org/10.1007/s00217-004-1062-7 CrossRefGoogle Scholar
  13. 13.
    Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20(2):113–136.  https://doi.org/10.1007/s10811-007-9188-1 CrossRefGoogle Scholar
  14. 14.
    Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180.  https://doi.org/10.1038/nbt.1586 CrossRefPubMedGoogle Scholar
  15. 15.
    Varman AM, Xiao Y, Pakrasi HB, Tang YJ (2013) Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl Environ Microbiol 79(3):908–914.  https://doi.org/10.1128/aem.02827-12 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oliver JW, Machado IM, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol. Proc Natl Acad Sci U S A 110:1249–1254.  https://doi.org/10.1073/pnas.1213024110 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108.  https://doi.org/10.1016/j.ymben.2013.09.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363.  https://doi.org/10.1016/j.ymben.2011.04.004 CrossRefPubMedGoogle Scholar
  19. 19.
    Shen CR, Liao JC (2012) Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci 5:9574–9583.  https://doi.org/10.1039/c2ee23148d CrossRefGoogle Scholar
  20. 20.
    Takahama K, Matsuoka M, Nagahama K, Ogawa T (2003) Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus. J Biosci Bioeng 95(3):302–305CrossRefGoogle Scholar
  21. 21.
    Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5(12):9857–9865.  https://doi.org/10.1039/C2EE22675H CrossRefGoogle Scholar
  22. 22.
    Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79.  https://doi.org/10.1016/j.ymben.2009.10.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnol Biofuels 6(1):69.  https://doi.org/10.1186/1754-6834-6-69 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li H, Liao JC (2013) Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Factories 12(1):4.  https://doi.org/10.1186/1475-2859-12-4 CrossRefGoogle Scholar
  25. 25.
    Liu XY, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904.  https://doi.org/10.1073/pnas.1103014108 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Varman AM, Yu Y, You L, Tang YJ (2013) Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microb Cell Factories 12:117.  https://doi.org/10.1186/1475-2859-12-117 CrossRefGoogle Scholar
  27. 27.
    Tyo KEJ, Jin Y-S, Espinoza FA, Stephanopoulos G (2009) Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803. Biotechnol Prog 25(5):1236–1243.  https://doi.org/10.1002/btpr.228 CrossRefPubMedGoogle Scholar
  28. 28.
    Miyasaka H, Okuhata H, Tanaka S, Onizuka T, Akiyama H (2013) Polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria. In: Petre M (ed) Environmental biotechnology – new approaches and prospective applications. InTech, RijekaGoogle Scholar
  29. 29.
    Takahashi H, Miyake M, Tokiwa Y, Asada Y (1998) Improved accumulation of poly-3- hydroxybutyrate by a recombinant cyanobacterium. Biotechnol Lett 20(2):183–186.  https://doi.org/10.1023/a:1005392827791 CrossRefGoogle Scholar
  30. 30.
    Bradley RW, Buck M, Wang B (2016) Tools and principles for microbial gene circuit engineering. J Mol Biol 428(5, Part B):862–888.  https://doi.org/10.1016/j.jmb.2015.10.004 CrossRefPubMedGoogle Scholar
  31. 31.
    O’Connor CM, Adams JU (2010) Essentials of cell biology. NPG Education, Cambridge, MAGoogle Scholar
  32. 32.
    Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG (2016) Synthetic and systems biology for microbial production of commodity chemicals. Npj Syst Biol Appl 2:16009.  https://doi.org/10.1038/npjsba.2016.9 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lo T-M, Teo WS, Ling H, Chen B, Kang A, Chang MW (2013) Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol Adv 31(6):903–914.  https://doi.org/10.1016/j.biotechadv.2013.02.001 CrossRefPubMedGoogle Scholar
  34. 34.
    Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488(7411):320–328CrossRefGoogle Scholar
  35. 35.
    Heidorn T, Camsund D, Huang HH, Lindberg P, Oliveira P, Stensjo K, Lindblad P (2011) Synthetic biology in cyanobacteria engineering and analyzing novel functions. Methods Enzymol 497:539–579.  https://doi.org/10.1016/b978-0-12-385075-1.00024-x CrossRefPubMedGoogle Scholar
  36. 36.
    Camsund D, Heidorn T, Lindblad P (2014) Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium. J Biol Eng 8(1):4.  https://doi.org/10.1186/1754-1611-8-4 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Oliver JWK, Atsumi S (2014) Metabolic design for cyanobacterial chemical synthesis. Photosynth Res 120(3):249–261.  https://doi.org/10.1007/s11120-014-9997-4 CrossRefPubMedGoogle Scholar
  38. 38.
    Imamura S, Asayama M (2009) Sigma factors for cyanobacterial transcription. Gene Regul Syst Biol 3:65–87Google Scholar
  39. 39.
    Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Factories 15:115.  https://doi.org/10.1186/s12934-016-0514-7 CrossRefGoogle Scholar
  40. 40.
    Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB (2013) Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4:246.  https://doi.org/10.3389/fmicb.2013.00246 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Los DA (2016) Cyanobacteria: omics and manipulation. Caister Academic Press, PooleGoogle Scholar
  42. 42.
    Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305.  https://doi.org/10.1038/nrmicro2737 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Saha R, Verseput AT, Berla BM, Mueller TJ, Pakrasi HB, Maranas CD (2012) Reconstruction and comparison of the metabolic potential of cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS One 7(10):e48285.  https://doi.org/10.1371/journal.pone.0048285 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saha R, Chowdhury A, Maranas CD (2014) Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol 29:39–45.  https://doi.org/10.1016/j.copbio.2014.02.011 CrossRefPubMedGoogle Scholar
  45. 45.
    Machado D, Herrgård MJ (2015) Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab Eng Commun 2:85–92.  https://doi.org/10.1016/j.meteno.2015.04.001 CrossRefGoogle Scholar
  46. 46.
    Deng MD, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65(2):523–528PubMedPubMedCentralGoogle Scholar
  47. 47.
    Gardner TS, Hawkins K (2013) Synthetic biology: evolution or revolution? A co-founder’s perspective. Curr Opin Chem Biol 17(6):871–877.  https://doi.org/10.1016/j.cbpa.2013.09.013 CrossRefPubMedGoogle Scholar
  48. 48.
    Chappell J, Watters KE, Takahashi MK, Lucks JB (2015) A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol 28:47–56.  https://doi.org/10.1016/j.cbpa.2015.05.018 CrossRefPubMedGoogle Scholar
  49. 49.
    Nielsen AAK, Segall-Shapiro TH, Voigt CA (2013) Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr Opin Chem Biol 17(6):878–892.  https://doi.org/10.1016/j.cbpa.2013.10.003 CrossRefPubMedGoogle Scholar
  50. 50.
    Pitzer J, Van Hove B, Love AM, Ajikumar PK, De Mey M, Glieder A (2016) Novel DNA and RNA elements. In: Glieder A, Kubicek CP, Mattanovich D, Wiltschi B, Sauer M (eds) Synthetic biology. Springer, Cham, pp 65–99.  https://doi.org/10.1007/978-3-319-22708-5_2 CrossRefGoogle Scholar
  51. 51.
    Li H, Shen CR, Huang C-H, Sung L-Y, Wu M-Y, Hu Y-C (2016) CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Metab Eng 28. doi: https://doi.org/10.1016/j.ymben.2016.09.006
  52. 52.
    Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681.  https://doi.org/10.1038/srep39681 https://www.nature.com/articles/srep39681#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF (2016) CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng 38:170–179.  https://doi.org/10.1016/j.ymben.2016.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Yao L, Cengic I, Anfelt J, Hudson EP (2016) Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol 5(3):207–212.  https://doi.org/10.1021/acssynbio.5b00264 CrossRefPubMedGoogle Scholar
  55. 55.
    Huang C-H, Shen CR, Li H, Sung L-Y, Wu M-Y, Hu Y-C (2016) CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Microb Cell Factories 15(1):196.  https://doi.org/10.1186/s12934-016-0595-3 CrossRefGoogle Scholar
  56. 56.
    Huang HH, Camsund D, Lindblad P, Heidorn T (2010) Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res 38(8):2577–2593.  https://doi.org/10.1093/nar/gkq164 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR (2012) Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS One 7(11):e50470.  https://doi.org/10.1371/journal.pone.0050470 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Ng WO, Zentella R, Wang Y, Taylor JS, Pakrasi HB (2000) PhrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase. Arch Microbiol 173(5–6):412–417CrossRefGoogle Scholar
  59. 59.
    Jacobsen JH, Frigaard NU (2014) Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metab Eng 21:60–70.  https://doi.org/10.1016/j.ymben.2013.11.004 CrossRefPubMedGoogle Scholar
  60. 60.
    Jeamton W, Dulsawat S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2011) Phycocyanin promoter of Spirulina platensis controlling heterologous expression in cyanobacteria. J Appl Phycol 23(1):83–88.  https://doi.org/10.1007/s10811-010-9540-8 CrossRefGoogle Scholar
  61. 61.
    Immethun CM, Ng KM, DeLorenzo DM, Waldron-Feinstein B, Lee YC, Moon TS (2016) Oxygen-responsive genetic circuits constructed in Synechocystis sp. PCC 6803. Biotechnol Bioeng 113(2):433–442.  https://doi.org/10.1002/bit.25722 CrossRefPubMedGoogle Scholar
  62. 62.
    Markley AL, Begemann MB, Clarke RE, Gordon GC, Pfleger BF (2014) Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS Synth Biol.  https://doi.org/10.1021/sb500260k
  63. 63.
    Elhai J (1993) Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol Lett 114(2):179–184.  https://doi.org/10.1111/j.1574-6968.1993.tb06570.x CrossRefPubMedGoogle Scholar
  64. 64.
    Wolk CP, Elhai J, Kuritz T, Holland D (1993) Amplified expression of a transcriptional pattern formed during development of Anabaena. Mol Microbiol 7(3):441–445CrossRefGoogle Scholar
  65. 65.
    Billi D, Friedmann EI, Helm RF, Potts M (2001) Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. J Bacteriol 183(7):2298–2305.  https://doi.org/10.1128/jb.183.7.2298-2305.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Dzelzkalns VA, Owens GC, Bogorad L (1984) Chloroplast promoter driven expression of the chloramphenicol acetyl transferase gene in a cyanobacterium. Nucleic Acids Res 12(23):8917–8925CrossRefGoogle Scholar
  67. 67.
    Kim WJ, Lee S-M, Um Y, Sim SJ, Woo HM (2017) Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942. Front Plant Sci 8:293.  https://doi.org/10.3389/fpls.2017.00293 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ducat DC, Sachdeva G, Silver PA (2011) Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proc Natl Acad Sci U S A 108(10):3941–3946.  https://doi.org/10.1073/pnas.1016026108 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Niederholtmeyer H, Wolfstädter BT, Savage DF, Silver PA, Way JC (2010) Engineering cyanobacteria to synthesize and export hydrophilic products. Appl Environ Microbiol 76:3462–3466.  https://doi.org/10.1128/aem.00202-10 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Geerts D, Bovy A, de Vrieze G, Borrias M, Weisbeek P (1995) Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 141(Pt 4):831–841CrossRefGoogle Scholar
  71. 71.
    Huang HH, Lindblad P (2013) Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 7(1):10.  https://doi.org/10.1186/1754-1611-7-10 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Immethun CM, DeLorenzo DM, Focht CM, Gupta D, Johnson CB, Moon TS (2017) Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for Synechocystis sp. PCC 6803. Biotechnol Bioeng.  https://doi.org/10.1002/bit.26275
  73. 73.
    Higo A, Isu A, Fukaya Y, Hisabori T (2016) Efficient gene induction and endogenous gene repression systems for the filamentous cyanobacterium Anabaena sp. PCC 7120. Plant Cell Physiol 57(2):387–396.  https://doi.org/10.1093/pcp/pcv202 CrossRefPubMedGoogle Scholar
  74. 74.
    Zess EK, Begemann MB, Pfleger BF (2016) Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 113(2):424–432.  https://doi.org/10.1002/bit.25713 CrossRefPubMedGoogle Scholar
  75. 75.
    Nozzi NE, Atsumi S (2015) Genome engineering of the 2,3-butanediol biosynthetic pathway for tight regulation in cyanobacteria. ACS Synth Biol 4(11):1197–1204.  https://doi.org/10.1021/acssynbio.5b00057 CrossRefPubMedGoogle Scholar
  76. 76.
    Albers SC, Gallegos VA, Peebles CA (2015) Engineering of genetic control tools in Synechocystis sp. PCC 6803 using rational design techniques. J Biotechnol 216:36–46.  https://doi.org/10.1016/j.jbiotec.2015.09.042 CrossRefPubMedGoogle Scholar
  77. 77.
    Miyake K, Abe K, Ferri S, Nakajima M, Nakamura M, Yoshida W, Kojima K, Ikebukuro K, Sode K (2014) A green-light inducible lytic system for cyanobacterial cells. Biotechnol Biofuels 7(1):1–8.  https://doi.org/10.1186/1754-6834-7-56 CrossRefGoogle Scholar
  78. 78.
    Albers SC, Peebles CA (2016) Evaluating light-induced promoters for the control of heterologous gene expression in Synechocystis sp. PCC 6803. Biotechnol Prog.  https://doi.org/10.1002/btpr.2396
  79. 79.
    Čelešnik H, Tanšek A, Tahirović A, Vižintin A, Mustar J, Vidmar V, Dolinar M (2016) Biosafety of biotechnologically important microalgae: intrinsic suicide switch implementation in cyanobacterium <em>Synechocystis</em> sp<em>.</em> PCC 6803. Biol Open.  https://doi.org/10.1242/bio.017129
  80. 80.
    Abe K, Miyake K, Nakamura M, Kojima K, Ferri S, Ikebukuro K, Sode K (2014) Engineering of a greenlight inducible gene expression system in Synechocystis sp. PCC6803. Microb Biotechnol 7:177–183.  https://doi.org/10.1111/1751-7915.12098 CrossRefPubMedGoogle Scholar
  81. 81.
    Higo A, Isu A, Fukaya Y, Hisabori T (2017) Designing synthetic flexible gene regulation networks using RNA devices in cyanobacteria. ACS Synth Biol 6(1):55–61.  https://doi.org/10.1021/acssynbio.6b00201 CrossRefPubMedGoogle Scholar
  82. 82.
    Georg J, Vosz B, Scholz I, Mitschke J, Wilde A, Hess WR (2009) Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 5:305 http://www.nature.com/msb/journal/v5/n1/suppinfo/msb200963_S1.html CrossRefGoogle Scholar
  83. 83.
    Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voss B, Steglich C, Wilde A, Vogel J, Hess WR (2011) An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 108(5):2124–2129.  https://doi.org/10.1073/pnas.1015154108 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to precisely control protein expression. Nat Biotechnol 27(10):946–950.  https://doi.org/10.1038/nbt.1568 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Englund E, Liang F, Lindberg P (2016) Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Sci Rep 6:36640.  https://doi.org/10.1038/srep36640 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82.  https://doi.org/10.1016/j.ymben.2014.01.001 CrossRefPubMedGoogle Scholar
  87. 87.
    Ma AT, Schmidt CM, Golden JW (2014) Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80:6704–6713.  https://doi.org/10.1128/aem.01697-14 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y (2013) Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol 54(10):1724–1735.  https://doi.org/10.1093/pcp/pct115 CrossRefPubMedGoogle Scholar
  89. 89.
    Ohbayashi R, Akai H, Yoshikawa H, Hess WR, Watanabe S (2016) A tightly inducible riboswitch system in Synechocystis sp. PCC 6803. J Gen Appl Microbiol 62(3):154–159.  https://doi.org/10.2323/jgam.2016.02.002 CrossRefPubMedGoogle Scholar
  90. 90.
    Sakai Y, Abe K, Nakashima S, Ellinger JJ, Ferri S, Sode K, Ikebukuro K (2015) Scaffold-fused riboregulators for enhanced gene activation in Synechocystis sp. PCC 6803. MicrobiologyOpen 4(4):533–540.  https://doi.org/10.1002/mbo3.257 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Landry BP, Stockel J, Pakrasi HB (2013) Use of degradation tags to control protein levels in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 79(8):2833–2835.  https://doi.org/10.1128/aem.03741-12 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Taton A, Ma AT, Ota M, Golden SS, Golden JW (2017) NOT gate genetic circuits to control gene expression in cyanobacteria. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.7b00203
  93. 93.
    Gophna U, Allers T, Marchfelder A (2017) Finally, archaea get their CRISPR-Cas toolbox. Trends Microbiol 25(6):430–432.  https://doi.org/10.1016/j.tim.2017.03.009 CrossRefPubMedGoogle Scholar
  94. 94.
    Lander N, Chiurillo MA, Docampo R (2016) Genome editing by CRISPR/Cas9: a game change in the genetic manipulation of protists. J Eukaryot Microbiol 63(5):679–690.  https://doi.org/10.1111/jeu.12338 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10(7):e0133085.  https://doi.org/10.1371/journal.pone.0133085 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Plaza Reyes A, Lanner F (2017) Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 144(1):3–7.  https://doi.org/10.1242/dev.139683 CrossRefPubMedGoogle Scholar
  97. 97.
    Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L-L CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532.  https://doi.org/10.1016/j.molp.2017.01.003
  98. 98.
    Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15.  https://doi.org/10.1038/nrm.2015.2 CrossRefPubMedGoogle Scholar
  99. 99.
    Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722–736.  https://doi.org/10.1038/nrmicro3569 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucl Acids Res 42:6091–6105CrossRefGoogle Scholar
  101. 101.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for genome editing, regulation and targeting. Nat Biotechnol 32(4):347–355.  https://doi.org/10.1038/nbt.2842 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532(7600):517–521.  https://doi.org/10.1038/nature17945 http://www.nature.com/nature/journal/v532/n7600/abs/nature17945.html#supplementary-information CrossRefPubMedGoogle Scholar
  103. 103.
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67.  https://doi.org/10.1038/nature13011 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, Volz Sara E, Joung J, van der Oost J, Regev A, Koonin Eugene V, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771.  https://doi.org/10.1016/j.cell.2015.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Brusslan J, Haselkorn R (1989) Resistance to the photosystem II herbicide diuron is dominant to sensitivity in the cyanobacterium Synechococcus sp. PCC7942. EMBO J 8(4):1237–1245PubMedPubMedCentralGoogle Scholar
  106. 106.
    Masukawa H, Inoue K, Sakurai H, Wolk CP, Hausinger RP (2010) Site-directed mutagenesis of the Anabaena sp. strain PCC 7120 nitrogenase active site to increase photobiological hydrogen production. Appl Environ Microbiol 76(20):6741–6750.  https://doi.org/10.1128/aem.01056-10 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Kouril R, Arteni AA, Lax J, Yeremenko N, D'Haene S, Rogner M, Matthijs HC, Dekker JP, Boekema EJ (2005) Structure and functional role of supercomplexes of IsiA and photosystem I in cyanobacterial photosynthesis. FEBS Lett 579(15):3253–3257.  https://doi.org/10.1016/j.febslet.2005.03.051 CrossRefPubMedGoogle Scholar
  108. 108.
    Weisse AY, Oyarzun DA, Danos V, Swain PS (2015) Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci U S A 112(9):E1038–E1047.  https://doi.org/10.1073/pnas.1416533112 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Bikard D, Jiang WY, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res:41, 7429–7437.  https://doi.org/10.1093/nar/gkt520
  110. 110.
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451.  https://doi.org/10.1016/j.cell.2013.06.044 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Lee YJ, Hoynes-O’Connor A, Leong MC, Moon TS (2016) Programmable control of bacterial gene expression with the combined CRISPR and antisense RNA system. Nucleic Acids Res 44:2462–2473.  https://doi.org/10.1093/nar/gkw056 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183.  https://doi.org/10.1016/j.cell.2013.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Copeland MF, Politz MC, Pfleger BF (2014) Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Curr Opin Biotechnol 29:46–54.  https://doi.org/10.1016/j.copbio.2014.02.010 CrossRefPubMedGoogle Scholar
  114. 114.
    Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6(9):681–691CrossRefGoogle Scholar
  115. 115.
    Monshupanee T, Incharoensakdi A (2014) Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. J Appl Microbiol 116(4):830–838.  https://doi.org/10.1111/jam.12409 CrossRefPubMedGoogle Scholar
  116. 116.
    Horvath R, Cerny J, Benedik J Jr, Hokl J, Jelinkova I, Benedik J (2000) The possible role of human cytomegalovirus (HCMV) in the origin of atherosclerosis. J Clin Virol 16(1):17–24CrossRefGoogle Scholar
  117. 117.
    Ballicora MA, Iglesias AA, Preiss J (2003) ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67(2):213–225 table of contentsCrossRefGoogle Scholar
  118. 118.
    Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I, Fujiwara S, Tsuzuki M, Nakamura Y (2010) Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol 76(10):3153–3159.  https://doi.org/10.1128/aem.00397-08 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78:2660–2668.  https://doi.org/10.1128/aem.07901-11 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Imashimizu M, Tanaka K, Shimamoto N (2011) Comparative study of cyanobacterial and E. coli RNA polymerases: misincorporation, abortive transcription, and dependence on divalent cations. Genet Res Int 2011:572689.  https://doi.org/10.4061/2011/572689 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Imamura S, Yoshihara S, Nakano S, Shiozaki N, Yamada A, Tanaka K, Takahashi H, Asayama M, Shirai M (2003) Purification, characterization, and gene expression of all sigma factors of RNA polymerase in a cyanobacterium. J Mol Biol 325(5):857–872CrossRefGoogle Scholar
  122. 122.
    Khudyakov IY, Golden JW (2001) Identification and inactivation of three group 2 sigma factor genes in Anabaena sp. strain PCC 7120. J Bacteriol 183(22):6667–6675.  https://doi.org/10.1128/jb.183.22.6667-6675.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Inoue-Sakamoto K, Gruber TM, Christensen SK, Arima H, Sakamoto T, Bryant DA (2007) Group 3 sigma factors in the marine cyanobacterium Synechococcus sp. strain PCC 7002 are required for growth at low temperature. J Gen Appl Microbiol 53(2):89–104CrossRefGoogle Scholar
  124. 124.
    Chen YC, Jeng ST (2000) Binding affinity of T7 RNA polymerase to its promoter in the supercoiled and linearized DNA templates. Biosci Biotechnol Biochem 64(6):1126–1132CrossRefGoogle Scholar
  125. 125.
    Lussier FX, Denis F, Shareck F (2010) Adaptation of the highly productive T7 expression system to Streptomyces lividans. Appl Environ Microbiol 76(3):967–970.  https://doi.org/10.1128/aem.02186-09 CrossRefPubMedGoogle Scholar
  126. 126.
    Anderson C (2006) Promoters/Catalog/Anderson. iGEM. http://parts.igem.org/Promoters/Catalog/Anderson. 2017
  127. 127.
    Xu Y, Alvey RM, Byrne PO, Graham JE, Shen G, Bryant DA (2011) Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Methods Mol Biol 684:273–293.  https://doi.org/10.1007/978-1-60761-925-3_21 CrossRefPubMedGoogle Scholar
  128. 128.
    Brosius J, Erfle M, Storella J (1985) Spacing of the −10 and −35 regions in the tac promoter. Effect on its in vivo activity. J Biol Chem 260(6):3539–3541PubMedGoogle Scholar
  129. 129.
    Peca L, Kos PB, Vass I (2007) Characterization of the activity of heavy metal-responsive promoters in the cyanobacterium Synechocystis PCC 6803. Acta Biol Hung 58(Suppl):11–22.  https://doi.org/10.1556/ABiol.58.2007.Suppl.2 CrossRefPubMedGoogle Scholar
  130. 130.
    Michel KP, Pistorius EK, Golden SS (2001) Unusual regulatory elements for iron deficiency induction of the idiA gene of Synechococcus elongatus PCC 7942. J Bacteriol 183(17):5015–5024CrossRefGoogle Scholar
  131. 131.
    Giner-Lamia J, Lopez-Maury L, Florencio FJ (2015) CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803. Microbiology 4(1):167–185.  https://doi.org/10.1002/mbo3.231 CrossRefGoogle Scholar
  132. 132.
    Amann E, Ochs B, Abel K-J (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69(2):301–315.  https://doi.org/10.1016/0378-1119(88)90440-4 CrossRefPubMedGoogle Scholar
  133. 133.
    Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25(6):1203–1210CrossRefGoogle Scholar
  134. 134.
    Gatti-Lafranconi P, Dijkman WP, Devenish SR, Hollfelder F (2013) A single mutation in the core domain of the lac repressor reduces leakiness. Microb Cell Factories 12:67.  https://doi.org/10.1186/1475-2859-12-67 CrossRefGoogle Scholar
  135. 135.
    Hillen W, Berens C (1994) Mechanisms underlying expression of TN10 encoded tetracycline resistance. Annu Rev Microbiol 48(1):345–369.  https://doi.org/10.1146/annurev.mi.48.100194.002021 CrossRefPubMedGoogle Scholar
  136. 136.
    Wissmann A, Meier I, Wray LV, Geissendörfer M, Hillen W (1986) Tn10 tet operator mutations affecting Tet repressor recognition. Nucleic Acids Res 14(10):4253–4266CrossRefGoogle Scholar
  137. 137.
    Barinova N, Kuznedelov K, Severinov K, Kulbachinskiy A (2008) Structural modules of RNA polymerase required for transcription from promoters containing downstream basal promoter element GGGA. J Biol Chem 283(33):22482–22489.  https://doi.org/10.1074/jbc.M802445200 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Feklistov A, Barinova N, Sevostyanova A, Heyduk E, Bass I, Vvedenskaya I, Kuznedelov K, Merkiene E, Stavrovskaya E, Klimasauskas S, Nikiforov V, Heyduk T, Severinov K, Kulbachinskiy A (2006) A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. Mol Cell 23(1):97–107.  https://doi.org/10.1016/j.molcel.2006.06.010 CrossRefPubMedGoogle Scholar
  139. 139.
    Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL (2006) rRNA promoter regulation by nonoptimal binding of σ region 1.2: an additional recognition element for RNA polymerase. Cell 125(6):1069–1082.  https://doi.org/10.1016/j.cell.2006.04.034 CrossRefPubMedGoogle Scholar
  140. 140.
    Haugen SP, Ross W, Manrique M, Gourse RL (2008) Fine structure of the promoter-sigma region 1.2 interaction. Proc Natl Acad Sci U S A 105(9):3292–3297.  https://doi.org/10.1073/pnas.0709513105 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Schleif R (2010) AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action. FEMS Microbiol Rev 34(5):779–796.  https://doi.org/10.1111/j.1574-6976.2010.00226.x CrossRefPubMedGoogle Scholar
  142. 142.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346.  https://doi.org/10.1146/annurev.cellbio.21.012704.131001 CrossRefPubMedGoogle Scholar
  143. 143.
    Davis RM, Muller RY, Haynes KA (2015) Can the natural diversity of quorum-sensing advance synthetic biology? Front Bioeng Biotechnol 3:30.  https://doi.org/10.3389/fbioe.2015.00030 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Romero M, Muro-Pastor AM, Otero A (2011) Quorum sensing N-acylhomoserine lactone signals affect nitrogen fixation in the cyanobacterium Anabaena sp. PCC7120. FEMS Microbiol Lett 315(2):101–108.  https://doi.org/10.1111/j.1574-6968.2010.02175.x CrossRefPubMedGoogle Scholar
  145. 145.
    Hoynes-O’Connor A, Moon TS (2015) Programmable genetic circuits for pathway engineering. Curr Opin Biotechnol 36:115–121.  https://doi.org/10.1016/j.copbio.2015.08.007 CrossRefPubMedGoogle Scholar
  146. 146.
    Tyystjärvi T, Aro E-M, Jansson C, Mäenpää P (1994) Changes of amino acid sequence in PEST-like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II. Plant Mol Biol 25(3):517–526.  https://doi.org/10.1007/bf00043879 CrossRefPubMedGoogle Scholar
  147. 147.
    Hirose Y, Shimada T, Narikawa R, Katayama M, Ikeuchi M (2008) Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc Natl Acad Sci U S A 105:9528–9533.  https://doi.org/10.1073/pnas.0801826105 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA, Levy M, Davidson EA, Scouras A, Ellington AD, Marcotte EM, Voigt CA (2005) Synthetic biology: engineering Escherichia coli to see light. Nature 438(7067):441–442 http://www.nature.com/nature/journal/v438/n7067/suppinfo/nature04405_S1.html CrossRefGoogle Scholar
  149. 149.
    Olson EJ, Hartsough LA, Landry BP, Shroff R, Tabor JJ (2014) Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. Nat Methods 11(4):449–455.  https://doi.org/10.1038/nmeth.2884 CrossRefPubMedGoogle Scholar
  150. 150.
    Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wunschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20 table of contentsCrossRefGoogle Scholar
  151. 151.
    Crack JC, Green J, Thomson AJ, Le Brun NE (2012) Iron-sulfur cluster sensor-regulators. Curr Opin Chem Biol 16(1–2):35–44.  https://doi.org/10.1016/j.cbpa.2012.02.009 CrossRefPubMedGoogle Scholar
  152. 152.
    Grainger DC, Aiba H, Hurd D, Browning DF, Busby SJ (2007) Transcription factor distribution in Escherichia coli: studies with FNR protein. Nucleic Acids Res 35(1):269–278.  https://doi.org/10.1093/nar/gkl1023 CrossRefPubMedGoogle Scholar
  153. 153.
    Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, Wendorff M, Losi A, Gartner W, Jaeger KE (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25(4):443–445.  https://doi.org/10.1038/nbt1293 CrossRefPubMedGoogle Scholar
  154. 154.
    Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537CrossRefGoogle Scholar
  155. 155.
    Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354–359.  https://doi.org/10.1038/nbt.2149 CrossRefPubMedGoogle Scholar
  156. 156.
    Osanai T, Imamura S, Asayama M, Shirai M, Suzuki I, Murata N, Tanaka K (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res 13(5):185–195.  https://doi.org/10.1093/dnares/dsl010 CrossRefPubMedGoogle Scholar
  157. 157.
    Mueller TJ, Welsh EA, Pakrasi HB, Maranas CD (2016) Identifying regulatory changes to facilitate nitrogen fixation in the Nondiazotroph Synechocystis sp. PCC 6803. ACS Synth Biol 5(3):250–258.  https://doi.org/10.1021/acssynbio.5b00202 CrossRefPubMedGoogle Scholar
  158. 158.
    Liu D, Yang C (2014) The nitrogen-regulated response regulator NrrA controls cyanophycin synthesis and glycogen catabolism in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 289(4):2055–2071.  https://doi.org/10.1074/jbc.M113.515270 CrossRefPubMedGoogle Scholar
  159. 159.
    Henkin TM (2008) Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 22(24):3383–3390.  https://doi.org/10.1101/gad.1747308 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Chen YJ, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10(7):659–664.  https://doi.org/10.1038/nmeth.2515 CrossRefPubMedGoogle Scholar
  161. 161.
    Lin M-T, Wang C-Y, Xie H-J, Cheung CHY, Hsieh C-H, Juan H-F, Chen B-S, Lin C (2016) Novel utilization of terminators in the design of biologically adjustable synthetic filters. ACS Synth Biol 5(5):365–374.  https://doi.org/10.1021/acssynbio.5b00174 CrossRefPubMedGoogle Scholar
  162. 162.
    Kopf M, Hess WR (2015) Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 39(3):301–315.  https://doi.org/10.1093/femsre/fuv017 CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628.  https://doi.org/10.1016/j.cell.2009.01.043 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Spiller H, Latorre C, Hassan ME, Shanmugam KT (1986) Isolation and characterization of nitrogenase-derepressed mutant strains of cyanobacterium Anabaena variabilis. J Bacteriol 165(2):412–419CrossRefGoogle Scholar
  165. 165.
    Voß B, Gierga G, Axmann IM, Hess WR (2007) A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria. BMC Genomics 8(1):375.  https://doi.org/10.1186/1471-2164-8-375 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42.  https://doi.org/10.1016/b978-0-12-385120-8.00002-4 CrossRefPubMedGoogle Scholar
  167. 167.
    Seo SW, Yang JS, Kim I, Yang J, Min BE, Kim S, Jung GY (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74.  https://doi.org/10.1016/j.ymben.2012.10.006 CrossRefPubMedGoogle Scholar
  168. 168.
    Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26(20):2633–2634.  https://doi.org/10.1093/bioinformatics/btq458 CrossRefPubMedGoogle Scholar
  169. 169.
    Topp S, Reynoso CM, Seeliger JC, Goldlust IS, Desai SK, Murat D, Shen A, Puri AW, Komeili A, Bertozzi CR, Scott JR, Gallivan JP (2010) Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76(23):7881–7884.  https://doi.org/10.1128/aem.01537-10 CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Kittle JD, Simons RW, Lee J, Kleckner N (1989) Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5′ end of the target RNA and a loop in the anti-sense RNA. J Mol Biol 210(3):561–572CrossRefGoogle Scholar
  171. 171.
    Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847 doi: http://www.nature.com/nbt/journal/v22/n7/suppinfo/nbt986_S1.html CrossRefGoogle Scholar
  172. 172.
    Sakai Y, Abe K, Nakashima S, Yoshida W, Ferri S, Sode K, Ikebukuro K (2014) Improving the gene-regulation ability of small RNAs by scaffold engineering in Escherichia coli. ACS Synth Biol 3(3):152–162.  https://doi.org/10.1021/sb4000959 CrossRefPubMedGoogle Scholar
  173. 173.
    Dienst D, Duhring U, Mollenkopf HJ, Vogel J, Golecki J, Hess WR, Wilde A (2008) The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803. Microbiology 154(Pt 10):3134–3143.  https://doi.org/10.1099/mic.0.2008/020222-0 CrossRefPubMedGoogle Scholar
  174. 174.
    Farrell CM, Grossman AD, Sauer RT (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol Microbiol 57(6):1750–1761.  https://doi.org/10.1111/j.1365-2958.2005.04798.x CrossRefPubMedGoogle Scholar
  175. 175.
    Gottesman S, Roche E, Zhou Y, Sauer RT (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12(9):1338–1347CrossRefGoogle Scholar
  176. 176.
    Heravi KM, Lange J, Watzlawick H, Kalinowski J, Altenbuchner J (2015) Transcriptional regulation of the vanillate utilization genes (vanABK operon) of Corynebacterium glutamicum by VanR, a PadR-like repressor. J Bacteriol 197(5):959–972CrossRefGoogle Scholar
  177. 177.
    Moon TS, Lou C, Tamsir A, Stanton BC, Voigt CA (2012) Genetic programs constructed from layered logic gates in single cells. Nature 491(7423):249–253.  https://doi.org/10.1038/nature11516 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Hoynes-O’Connor A, Moon TS (2016) Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synth Biol 5(12):1441–1454.  https://doi.org/10.1021/acssynbio.6b00036 CrossRefPubMedGoogle Scholar
  179. 179.
    Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ, Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci U S A 112(28):8529–8536.  https://doi.org/10.1073/pnas.1424031112 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Chatterjee A, Basu A (2011) Rubisco: limitations and re-engineering for a better enzyme. Int Res J Plant Sci 2(2):022–024Google Scholar
  181. 181.
    Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci 107(19):8889–8894.  https://doi.org/10.1073/pnas.0907176107 CrossRefPubMedGoogle Scholar
  182. 182.
    Nakao M, Okamoto S, Kohara M, Fujishiro T, Fujisawa T, Sato S, Tabata S, Kaneko T, Nakamura Y (2010) CyanoBase: the cyanobacteria genome database update 2010. Nucleic Acids Res 38(Database issue):D379–D381.  https://doi.org/10.1093/nar/gkp915 CrossRefPubMedGoogle Scholar
  183. 183.
    Hernandez-Prieto MA, Futschik ME (2012) CyanoEXpress: a web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803. Bioinformation 8(13):634–638.  https://doi.org/10.6026/97320630008634 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME (2016) The transcriptional landscape of the photosynthetic model cyanobacterium Synechocystis sp. PCC6803. Sci Rep 6:22168.  https://doi.org/10.1038/srep22168 http://www.nature.com/articles/srep22168#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Troják M, Šafránek D, Hrabec J, Šalagovič J, Romanovská F, Červený J (2016) E-cyanobacterium.org: a web-based platform for systems biology of cyanobacteria. Bartocci E, Lio P, Paoletti N Computational methods in systems biology: 14th international conference, CMSB 2016, Cambridge, UK, September 21–23, 2016, proceedings. Springer, Cham, pp 316–322.  https://doi.org/10.1007/978-3-319-45177-0_20
  186. 186.
    Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43(6):867–879.  https://doi.org/10.1016/j.molcel.2011.08.024 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Energy, Environmental and Chemical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations