lux Gene: Quorum Sensing, Engineering and Applications

  • Bhagwan Rekadwad


Phenotypes and genotypes of the microorganisms develop over a period of time as per the environmental conditions. Numbers of reason are responsible to make change outlook and characteristics of microorganisms. These include natural phenomenon such as quorum sensing, mutations, horizontal gene transfer that plays a critical part in bacterial quorum sensing development and has major clinical significance in bacterial evolution. This is the key to comprehend the components and energy of hereditary changes. Common change is the driving component for horizontal gene transfer in various genera of microscopic organisms. These changes may be due the necessity feel by microorganism allows to express their genes/environmental factors triggers the activation of genes. This book chapter present straightforward applications of lux-system in biotechnology and bioprocesses with industrial value.


Biophotonic imaging Dip-sticks Lux-system QS system Luciferase Reporter genes 


  1. Aguirre-Ramirez M, Medina G, Gonzalez-Valdez A, Grosso-Becerra V, Soberon-Chavez G (2012) The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor σS. Microbiology 158:908–916. CrossRefPubMedGoogle Scholar
  2. Arentshorst M, Lagendijk EL, Ram AFJ (2015) A new vector for efficient gene targeting to the pyrG locus in Aspergillus niger. Fungal Biol Biotechnol 2:2. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bazire A, Dufour A (2014) The Pseudomonas aeruginosa rhlG and rhlAB genes are inversely regulated and RhlG is not required for rhamnolipid synthesis. BMC Microbiol 14:160. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bjornsdottir-Butlera K, McCarthya SA, Dunlapb PV, Benner RA (2016) Photobacterium angustum and Photobacterium kishitanii, Psychrotrophic High-Level Histamine-Producing Bacteria Indigenous to Tuna. Appl Environ Microbiol 82:2167–2176. CrossRefGoogle Scholar
  5. Brito PH, Rocha EPC, Xavier KB, Gordo I (2013) Natural genome diversity of AI-2 quorum sensing in Escherichia coli: conserved signal production but labile signal reception. Genome Biol Evol 2013 5:16–30. CrossRefGoogle Scholar
  6. Bruckbauer ST, Kvitko BH, Karkhoff-Schweizer RR, Schweizer HP (2015) Tn5/7-lux: a versatile tool for the dentification and capture of promoters in gram-negative bacteria. BMC Microbiol 15:17. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Choi H, Mascuch SJ, Villa FA, Byrum T, Teasdale ME, Smith JE, Preskitt LB, Rowley DC, Gerwick L, Gerwick WH, Honaucins AC (2012) Potent inhibitors of eukaryotic inflammation and bacterial quorum sensing: synthetic derivatives and structure-activity relationships. Chem Biol 19:589–598. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cui B, Zhang L, Song Y, Wei J, Li C et al (2014) Engineering an enhanced, thermostable, monomeric bacterial luciferase gene as a reporter in plant protoplasts. PLoS ONE 9:e107885. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dunn AK, Rader BA, Stabb EV, Mandel MJ (2015) Regulation of bioluminescence in Photobacterium leiognathi strain KNH6. J Bacteriol 197:3676–3685. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fatima Q, Zahin M, Khan MSA, Ahemad I (2010) Modulation of quorum sensing controlled behaviour of bacteria by growing seedling, seed and seedling extracts of leguminous plants. Indian J Microbiol 50:238. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hauk P, Stephens K, Mckay R, Virgile CR, Ueda H, Ostermeier M, Ryu KS, Sintim HO, Bentley WE (2016) Insightful directed evolution of Escherichia coli quorum sensing promoter region of the lsrACDBFG operon: a tool for synthetic biology systems and protein expression. Nucleic Acids Res 44:10515–10525. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hooshangi S, Bentley WE (2011) LsrR Quorum sensing “Switch” is revealed by a bottom-up approach. PLoS Comput Biol 7:e1002172. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jung J, Park W (2015) Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 99:25–33. CrossRefGoogle Scholar
  14. Jung I, HB S, Lee J, Kim BC, Gu MB (2014) A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity. Analyst 139:4696. CrossRefPubMedGoogle Scholar
  15. Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. CrossRefPubMedGoogle Scholar
  16. Kalia VC (2015) Microbes: the most friendly beings? In: Kalia VC (ed) Quorum sensing vs Quorum Quenching: a battle with no end in sight. Springer, India, pp 1–5. CrossRefGoogle Scholar
  17. Kalia VC, Kumar P (2015) Genome wide search for biomarkers to diagnose Yersinia infections. Indian J Microbiol 55:366. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111. CrossRefPubMedGoogle Scholar
  19. Kaur G, Rajesh S, Princy SA (2015) Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian J Microbiol 55:349. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: A potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108. CrossRefPubMedGoogle Scholar
  21. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. CrossRefPubMedGoogle Scholar
  22. Koutsoudis MD, Tsaltas D, Minogue TD, Von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. PNAS 103:5983–5988. CrossRefPubMedGoogle Scholar
  23. McConnell MJ, Actis L, Pachón J (2013) Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37:130–155. CrossRefPubMedGoogle Scholar
  24. Mitchell RJ, Ahn JM, Gu MB (2005) Comparison of Photorhabdus luminescens and Vibrio fischeri lux fusions to study gene expression patterns. J Microbiol Biotechnol 15:48–54Google Scholar
  25. Molina AJ, Abisado RG, Calugay RJ (2016) Bioluminescent Vibrio spp. with antibacterial activity against the nosocomial pathogens Staphylococcus aureus and Klebsiella pneumonia. AACL Bioflux 9:185–194Google Scholar
  26. Pooja S, Pushpananthan M, Jayashree S, Gunasekaran P, Rajendhran J (2015) Identification of periplasmic a-amlyase from cow dung metagenome by product induced gene expression profiling (Pigex). Indian J Microbiol 55:57–65. CrossRefGoogle Scholar
  27. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanaotes. Indian J Microbiol 57:39–47. CrossRefPubMedGoogle Scholar
  28. Read HM, Mills G, Johnson S, Tsai P, Dalton J, Barquist L, Print CG, Patrick WM, Wiles S (2016) The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium. PeerJ 4:e2130. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rekadwad BN, Khobragade CN (2017a) Bacterial quorum sensing (QS) in rhizosphere (paddy soil): understanding soil signaling and N- recycling for increased crop production. In: Kalia V c (ed) Microbial applications vol.2 – biomedicine, agriculture and industry. Springer International Publishing AG, Switzerland., Springer Nature, pp 119–131. CrossRefGoogle Scholar
  30. Rekadwad BN, Khobragade CN (2017b) Microbial biofilm: role in crop productivity. In: Kalia V c (ed) Microbialapplications vol.2 – biomedicine, agriculture and industry. Springer Nature, Cham, pp 107–118.
  31. Rekadwad BN, Khobragade CN (2017b) Microbial biofilm: role in crop productivity. In: Kalia V c (ed) Microbial applications vol.2 – biomedicine, agriculture and industry. Springer International Publishing AG, Switzerland., Springer Nature, pp 107–118. CrossRefGoogle Scholar
  32. Renoz F, Champagne A, Degand H, Faber AM, Morsomme P, Foray V, Hance T (2017) Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont. PeerJ 5:e3291. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Santala V, Karp M, Santala S (2016) Bioluminescence-based system for rapid detection of natural transformation. FEMS Microbiol Lett 363:125. CrossRefGoogle Scholar
  34. Scott SR, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5:969–977. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shivak DJ, MacKenzie KD, Watson NL, Pasternak JA, Jones BD, Wang Y, DeVinney R, Wilson H, Surette MG, White AP (2016) A modular, Tn7-based system for making bioluminescent or fluorescent Salmonella and E. coli strains. Appl Environ Microbiol 82:4931–4943. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shukla SK, Mangwani N, Rao TS, Das S (2014) Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In: Das S (ed) Microbial biodegradation and bioremediation, Elsevier, p 203–232.
  37. Siddiqui MF, Rzechowicz M, Harvey W, Zularisam AW, Anthony GF (2015) Quorum sensing based membrane biofouling control for water treatment: a review. J Water Proc Eng 30:112–122. CrossRefGoogle Scholar
  38. Soma Y, Hanai T (2015) Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab Eng 30:7–15. CrossRefPubMedGoogle Scholar
  39. Tien S-M, Hsu C-Y, Chen B-S (2016) Engineering bacteria to search for specific concentrations of molecules by a systematic synthetic biology design method. PLoS ONE 11:e0152146. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Urbanczyk H, Ast JC, Dunlap PV (2010) Phylogeny, genomics, and symbiosis of photobacterium. FEMS Microbiol Rev 35(2011):324–342. CrossRefPubMedGoogle Scholar
  41. Vidal JE, Ludewick HP, Kunkel RM, Zähner D, Klugman KP (2011) The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 79:4050–4060. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yagur-Kroll S, Belkin S (2014) Molecular manipulations for enhancing luminescent bioreporters performance in the detection of toxic chemicals. In: Thouand G, Marks R (eds) Bioluminescence: fundamentals and applications in biotechnology–volume 2, advances in biochemical engineering/biotechnology. Springer-Verlag, Berlin, pp 137–149. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bhagwan Rekadwad
    • 1
  1. 1.National Centre for Microbial Resource, National Centre for Cell SciencePuneIndia

Personalised recommendations