Skip to main content

Structure and Physicochemical Properties of Starch

  • Chapter
  • First Online:
Physical Modifications of Starch

Abstract

Starch is a major component of many food products. It is also an important industrial ingredient for many different applications. Understanding the composition, molecular and granular structure, and physicochemical properties of starch contributes to the processing of starch for different uses. There are great variations in properties and structure of starches from different sources. This chapter reviews the basics of starch structure and physicochemical properties, providing a fundamental basis to better understand the contents of the other chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abegunde, O. K., Mu, T. H., Chen, J. W., & Deng, F. M. (2013). Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloids, 33, 169–177.

    Article  CAS  Google Scholar 

  • Ai, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch/Stärke, 67, 213–224.

    Article  CAS  Google Scholar 

  • Bertoft, E. (2004). Analysing starch structure. In A. C. Eliasson (Ed.), Starch in food: Structure, function and applications. Cambridge: Woodhead Publishing.

    Google Scholar 

  • Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7, 56.

    Article  Google Scholar 

  • Bertoft, E., Piyachomkwan, K., Chatakanonda, P., & Sriroth, K. (2008). Internal unit chain composition in amylopectins. Carbohydrate Polymers, 74, 527–543.

    Article  CAS  Google Scholar 

  • Beta, T., Corke, H., Rooney, L. W., & Taylor, J. (2001). Starch properties as affected by sorghum grain chemistry. Journal of the Science of Food and Agriculture, 81, 245–251.

    Article  CAS  Google Scholar 

  • Chen, Z., Schols, H. A., & Voragen, A. G. J. (2003). Physicochemical properties of starches obtained from three varieties of Chinese sweet potatoes. Journal of Food Science, 68, 431–437.

    Article  CAS  Google Scholar 

  • Collado, L. S., Mabesa, R. C., & Corke, H. (1999). Genetic variation in the physical properties of sweet potato starch. Journal of Agricultural and Food Chemistry, 47, 4195–4201.

    Article  CAS  Google Scholar 

  • Copeland, L., Blazek, J., Salman, H., & Tang, M. C. (2009). Form and functionality of starch. Food Hydrocolloids, 23, 1527–1534.

    Article  CAS  Google Scholar 

  • Djabali, D., Belhaneche, N., Nadjemi, B., Dulong, V., & Picton, L. (2009). Relationship between potato starch isolation methods and kinetic parameters of hydrolysis by free and immobilised α-amylase on alginate (from Laminaria digitata algae). Journal of Food Composition and Analysis, 22, 563–570.

    Article  CAS  Google Scholar 

  • Genkina, N. K., Kozlov, S. S., Martirosyan, V. V., & Kiseleva, V. I. (2014). Thermal behavior of maize starches with different amylose/amylopectin ratio studied by DSC analysis. Starch/Stärke, 66, 700–706.

    Article  CAS  Google Scholar 

  • Gibson, T. S., Solah, V. A., & McCleary, B. V. (1997). A procedure to measure amylose in cereal starches and flours with concanavalin A. Journal of Cereal Science, 25, 111–119.

    Article  CAS  Google Scholar 

  • Hanashiro, I., Abe, J. I., & Hizukuri, S. (1996). A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research, 283, 151–159.

    Article  CAS  Google Scholar 

  • Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tube and root starches: A review. Carbohydrate Polymers, 45, 253–267.

    Article  CAS  Google Scholar 

  • Huang, C. C., Lin, M. C., & Wang, C. C. (2006). Changes in morphological, thermal and pasting properties of yam (Dioscorea alata) starch during growth. Carbohydrate Polymers, 64, 524–531.

    Article  CAS  Google Scholar 

  • Ishiguro, K., Noda, T., Kitahara, K., & Yamakawa, O. (2000). Retrogradation of sweetpotato starch. Starch/Stärke, 52, 13–17.

    Article  CAS  Google Scholar 

  • Jane, J. L., Kasemsuwan, T., Leas, S., Zobel, H., & Robyt, J. F. (1994). Anthology of starch granule morphology by scanning electron microscopy. Starch/Stärke, 46, 121–129.

    Article  CAS  Google Scholar 

  • Jane, J. L., Ao, Z., Duvick, S. A., Wiklund, M., Yoo, S. H., Wong, K. S., & Gardner, C. (2003). Structures of amylopectin and starch granules: How are they synthesized? Journal of Applied Glycoscience, 50, 167–172.

    Article  CAS  Google Scholar 

  • Karunaratne, R., & Zhu, F. (2016). Physicochemical interactions of maize starch with ferulic acid. Food Chemistry, 199, 372–379.

    Article  CAS  Google Scholar 

  • Kim, J., Ren, C., & Shin, M. (2013). Physicochemical properties of starch isolated from eight different varieties of Korean sweet potatoes. Starch/Stärke, 65, 923–930.

    Article  CAS  Google Scholar 

  • Kong, X., Kasapis, S., Bertoft, E., & Corke, H. (2010). Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch/Stärke, 62, 302–308.

    Article  CAS  Google Scholar 

  • Lawal, O. S., & Adebowale, K. O. (2005). Physicochemical characteristics and thermal properties of chemically modified jack bean (Canavalia ensiformis) starch. Carbohydrate Polymers, 60, 331–341.

    Article  CAS  Google Scholar 

  • Lee, B. H., & Lee, Y. T. (2017). Physicochemical and structural properties of different colored sweet potato starches. Starch/Stärke, 69, 1600001.

    Article  Google Scholar 

  • Li, J. Y., & Yeh, A. I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering, 50, 141–148.

    Article  Google Scholar 

  • Li, G., Wang, S., & Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137, 328–338.

    Article  Google Scholar 

  • Liu, Y., Sabboh, H., Kirchhof, G., & Sopade, P. (2010). In vitro starch digestion and potassium release in sweet potato from Papua New Guinea. International Journal of Food Science and Technology, 45, 1925–1931.

    Google Scholar 

  • Moorthy, S. N. (2002). Physicochemical and functional properties of tropical tuber starches: A review. Starch/Stärke, 54, 559–592.

    Article  CAS  Google Scholar 

  • Naguleswaran, S., Vasanthan, T., Hoover, R., & Liu, Q. (2010). Structure and physicochemical properties of palmyrah (Borassus flabellifer L.) seed-shoot starch grown in Sri Lanka. Food Chemistry, 118, 634–640.

    Article  CAS  Google Scholar 

  • Nurul, M., Azemi, B. M., & Manan, D. M. A. (1999). Rheological behaviour of sago (Metroxylon sagu) starch paste. Food Chemistry, 64, 501–505.

    Article  Google Scholar 

  • Peat, S., Whelan, W. J., & Thomas, G. J. (1952). Evidence of multiple branching in waxy maize starch. Journal of the Chemical Society, Chemical Communications, 448, 4546–4548.

    Google Scholar 

  • Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/Stärke, 62, 389–420.

    Article  Google Scholar 

  • Peroni, F. H. G., Rocha, T. S., & Franco, C. M. L. (2006). Some structural and physicochemical characteristics of tuber and root starches. Food Science and Technology International, 12, 505–513.

    Article  CAS  Google Scholar 

  • Qi, X., & Tester, R. F. (2016). Effect of native starch granule size on susceptibility to amylase hydrolysis. Starch/Stärke, 68, 807–810.

    Article  CAS  Google Scholar 

  • Rosario, R. R. D., & Pontiveros, C. R. (1983). Retrogradation of some starch mixtures. Starch/Stärke, 35, 86–92.

    Article  Google Scholar 

  • Singh, N., Singh, J., Kaur, L., Sodhi, N. S., & Gill, B. S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219–231.

    Article  CAS  Google Scholar 

  • Srichuwong, S., & Jane, J. L. (2007). Physicochemical properties of starch affected by molecular composition and structure: A review. Food Science and Biotechnology, 16, 663–674.

    CAS  Google Scholar 

  • Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—Composition, fine structure and architecture. Journal of Cereal Science, 39, 151–165.

    Article  CAS  Google Scholar 

  • Tian, S. J., Rickard, J. E., & Blanshard, J. M. V. (1991). Physicochemical properties of sweet potato starch. Journal of the Science of Food and Agriculture, 57, 459–491.

    Article  CAS  Google Scholar 

  • Vamadevan, V., & Bertoft, E. (2015). Structure-function relationships of starch components. Starch/Stärke, 67, 55–68.

    Article  CAS  Google Scholar 

  • Waramboi, J. G., Dennien, S., Gidley, M. J., & Sopade, P. A. (2011). Characterisation of sweetpotato from Papua New Guinea and Australia: Physicochemical, pasting and gelatinisation properties. Food Chemistry, 126, 1759–1770.

    Article  CAS  Google Scholar 

  • Wu, K., Dai, S., Gan, R., Corke, H., & Zhu, F. (2016). Thermal and rheological properties of mung bean starch blends with potato, sweet potato, rice, and sorghum starches. Food and Bioprocess Technology, 9, 1408–1421.

    Article  CAS  Google Scholar 

  • Yussof, N. S., Utra, U., & Alias, A. K. (2013). Hydrolysis of native and cross-linked corn, tapioca, and sweet potato starches at sub-gelatinization temperature using a mixture of amylolytic enzymes. Starch/Stärke, 65, 285–295.

    Article  CAS  Google Scholar 

  • Zhou, Y., Hoover, R., & Liu, Q. (2004). Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydrate Polymers, 57, 299–317.

    Article  CAS  Google Scholar 

  • Zhou, Z., Topping, D. L., Morell, M. K., & Bird, A. R. (2010). Changes in starch physical characteristics following digestion of foods in the human small intestine. British Journal of Nutrition, 104, 573–581.

    Article  CAS  Google Scholar 

  • Zhu, F. (2015). Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydrate Polymers, 122, 456–480.

    Article  CAS  Google Scholar 

  • Zhu, F. (2017). Structures, physicochemical properties, and applications of amaranth starch. Critical Reviews in Food Science and Nutrition, 57, 313–325.

    Article  CAS  Google Scholar 

  • Zhu, F., & Wang, S. (2014). Physicochemical properties, molecular structure, and uses of sweetpotato starch. Trends in Food Science & Technology, 36, 68–78.

    Article  CAS  Google Scholar 

  • Zhu, T., Jackson, D. S., Wehling, R. L., & Geera, B. (2008). Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chemistry, 85, 51–58.

    Article  CAS  Google Scholar 

  • Zhu, F., Corke, H., & Bertoft, E. (2011a). Amylopectin internal molecular structure in relation to physical properties of sweetpotato starch. Carbohydrate Polymers, 84, 907–918.

    Article  CAS  Google Scholar 

  • Zhu, F., Yang, X., Cai, Y. Z., Bertoft, E., & Corke, H. (2011b). Physicochemical properties of sweetpotato starch. Starch/Stärke, 63, 249–259.

    Article  CAS  Google Scholar 

  • Zhu, F., Bertoft, E., Källman, A., Myers, A. M., & Seetharaman, K. (2013a). Molecular structure of starches from maize mutants deficient in starch synthase III. Journal of Agricultural and Food Chemistry, 61, 9899–9907.

    Article  CAS  Google Scholar 

  • Zhu, F., Bertoft, E., & Seetharaman, K. (2013b). Characterization of internal structure of maize starch without amylose and amylopectin separation. Carbohydrate Polymers, 97, 475–481.

    Article  CAS  Google Scholar 

  • Zhu, F., Bertoft, E., & Li, G. (2016). Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III. Journal of Agricultural and Food Chemistry, 64, 6539–6545.

    Article  CAS  Google Scholar 

  • Zhu, J., Zhang, S., Zhang, B., Qiao, D., Pu, H., Liu, S., & Li, L. (2017). Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. International Journal of Biological Macromolecules, 97, 123–130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, F., Xie, Q. (2018). Structure and Physicochemical Properties of Starch. In: Sui, Z., Kong, X. (eds) Physical Modifications of Starch. Springer, Singapore. https://doi.org/10.1007/978-981-13-0725-6_1

Download citation

Publish with us

Policies and ethics