Advertisement

Genomic-Scale Prioritization of Disease-Related Non-coding RNAs

  • Peng Wang
  • Xia LiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1094)

Abstract

The recent explosion in the number and diversity of non-coding RNAs (ncRNAs) identified by the large-scale technologies brings new challenges to the biomedical researchers – What are all these non-coding RNAs, how did they work, and most importantly, what is the relationship between them and complex diseases? Although some ncRNAs have been clearly characterized as risk biomarkers through biological experiments, there are still a limit number of known disease associated ncRNAs. Thus, bioinformatics methods have been widely used to predict candidate ncRNAs and disease associations. In this chapter, we will discuss several bioinformatics methods which have been developed to predict novel non-coding biomarkers. With such methods and tools, the prioritization and identification of complex-implicated ncRNAs is becoming a reality.

Keywords

Non-coding RNA Prioritization Biological network Functional similarity 

References

  1. 1.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ning S, Gao Y, Wang P, Li X, Zhi H, Zhang Y, Liu Y, Zhang J, Guo M, Han D, Li X (2016) Construction of a lncRNA-mediated feed-forward loop network reveals global topological features and prognostic motifs in human cancers. Oncotarget 7:45937–45947CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641CrossRefPubMedGoogle Scholar
  5. 5.
    Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742CrossRefPubMedGoogle Scholar
  6. 6.
    Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, Tsao MS, Penn LZ (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66:5330–5337CrossRefPubMedGoogle Scholar
  7. 7.
    Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q (2014) HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res 42:D1070–D1074CrossRefPubMedGoogle Scholar
  8. 8.
    Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q (2013) LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 41:D983–D986CrossRefPubMedGoogle Scholar
  9. 9.
    Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang L, Li X (2016) Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 44:D980–D985CrossRefPubMedGoogle Scholar
  10. 10.
    Zhao Z, Bai J, Wu A, Wang Y, Zhang J, Wang Z, Li Y, Xu J Li X (2015) Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data. Database (Oxford); 2015:1–7Google Scholar
  11. 11.
    Aranda B, Blankenburg H, Kerrien S, Brinkman FS, Ceol A, Chautard E, Dana JM, De Las Rivas J, Dumousseau M, Galeota E, Gaulton A, Goll J, Hancock RE, Isserlin R, Jimenez RC, Kerssemakers J, Khadake J, Lynn DJ, Michaut M, O’Kelly G, Ono K, Orchard S, Prieto C, Razick S, Rigina O, Salwinski L, Simonovic M, Velankar S, Winter A, Wu G, Bader GD, Cesareni G, Donaldson IM, Eisenberg D, Kleywegt GJ, Overington J, Ricard-Blum S, Tyers M, Albrecht M, Hermjakob H (2011) PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat Methods 8:528–529CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, Zhi H, Wang T, Guo Z, Li X (2015) Identification of lncRNA-associated competing triplets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res 43:3478–3489CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Guo Q, Cheng Y, Liang T, He Y, Ren C, Sun L, Zhang G (2015) Comprehensive analysis of lncRNA-mRNA co-expression patterns identifies immune-associated lncRNA biomarkers in ovarian cancer malignant progression. Sci Rep 5:17683CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guo X, Gao L, Liao Q, Xiao H, Ma X, Yang X, Luo H, Zhao G, Bu D, Jiao F, Shao Q, Chen R, Zhao Y (2013) Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks. Nucleic Acids Res 41:e35CrossRefPubMedGoogle Scholar
  15. 15.
    Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B (2014) A network based method for analysis of lncRNA-disease associations and prediction of lncRNAs implicated in diseases. PLoS One 9:e87797CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Doncheva NT, Kacprowski T, Albrecht M (2012) Recent approaches to the prioritization of candidate disease genes. Wiley Interdiscip Rev Syst Biol Med 4:429–442CrossRefPubMedGoogle Scholar
  17. 17.
    Wang P, Guo Q, Gao Y, Zhi H, Zhang Y, Liu Y, Zhang J, Yue M, Guo M, Ning S, Zhang G, Li X (2017) Improved method for prioritization of disease associated lncRNAs based on ceRNA theory and functional genomics data. Oncotarget 8:4642–4655PubMedGoogle Scholar
  18. 18.
    Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, Zhou H, Sun J (2015) Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol BioSyst 11:760–769CrossRefPubMedGoogle Scholar
  19. 19.
    Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4(Suppl 1):S2CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xu C, Qi R, Ping Y, Li J, Zhao H, Wang L, Du MY, Xiao Y, Li X (2017) Systemically identifying and prioritizing risk lncRNAs through integration of pan-cancer phenotype associations. Oncotarget 8:12041–12051PubMedPubMedCentralGoogle Scholar
  21. 21.
    van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug-target interaction. Bioinformatics 27:3036–3043CrossRefPubMedGoogle Scholar
  22. 22.
    Tranchevent LC, Barriot R, Yu S, Van Vooren S, Van Loo P, Coessens B, De Moor B, Aerts S, Moreau Y (2008) ENDEAVOUR update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36:W377–W384CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xiao Y, Guan J, Ping Y, Xu C, Huang T, Zhao H, Fan H, Li Y, Lv Y, Zhao T, Dong Y, Ren H, Li X (2012) Prioritizing cancer-related key miRNA-target interactions by integrative genomics. Nucleic Acids Res 40:7653–7665CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24:537–544CrossRefPubMedGoogle Scholar
  25. 25.
    Sifrim A, Popovic D, Tranchevent LC, Ardeshirdavani A, Sakai R, Konings P, Vermeesch JR, Aerts J, De Moor B, Moreau Y (2013) eXtasy: variant prioritization by genomic data fusion. Nat Methods 10:1083–1084CrossRefPubMedGoogle Scholar
  26. 26.
    Wang P, Ning S, Wang Q, Li R, Ye J, Zhao Z, Li Y, Huang T, Li X (2013) mirTarPri: improved prioritization of microRNA targets through incorporation of functional genomics data. PLoS One 8:e53685CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina

Personalised recommendations