Metabolomics of Immunity and Its Clinical Applications

  • Jing Qiu
  • Fangming Liu
  • Duojiao Wu
Part of the Translational Bioinformatics book series (TRBIO, volume 14)


Metabolomics refers to the quantitative analysis of all metabolites in the organism. It studies the correlation between metabolites and physiological statues. Immune cells include all the cells that are involved in an immune response or related to the process, such as lymphocytes, dendritic cells, monocytes/macrophages, etc. focusing on metabolic status of immune cells is of great significance to understanding the pathogenesis of disease, the curative effect and prevention of diseases. This article briefly introduces the meaning of metabolic profiling, the research methods and application of metabolic profiling on immune cell metabolism research, and the future development of metabolomics.


  1. Abu-Elheiga L, et al. Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. J Biol Chem. 1997;272(16):10669–77.PubMedCrossRefGoogle Scholar
  2. Abu-Elheiga L, et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science. 2001;291(5513):2613–6.PubMedCrossRefGoogle Scholar
  3. Abu-Elheiga L, et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc Natl Acad Sci U S A. 2003;100(18):10207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmadian M, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 2011;13(6):739–48.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allenspach EJ, et al. Absence of functional fetal regulatory T cells in humans causes in utero organ-specific autoimmunity. J Allergy Clin Immunol. 2017;140(2):616.PubMedCrossRefGoogle Scholar
  6. Amiel E, et al. Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol. 2012;189(5):2151–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amiel E, et al. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J Immunol. 2014;193(6):2821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anderson RA, et al. Mutations at the lysosomal acid cholesteryl ester hydrolase gene locus in Wolman disease. Proc Natl Acad Sci U S A. 1994;91(7):2718–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Andrejeva G, Rathmell JC. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 2017;26(1):49–70.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aune TM, Collins PL, Chang S. Epigenetics and T helper 1 differentiation. Immunology. 2009;126(3):299–305.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baitsch L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Investig. 2011;121(6):2350–60.PubMedCrossRefGoogle Scholar
  12. Beckonert O, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703.PubMedCrossRefGoogle Scholar
  13. Beleggia R, et al. Effect of genotype, environment and genotype-by-environment interaction on metabolite profiling in durum wheat (Triticum durum Desf.) grain. J Cereal Sci. 2013;57(2):183–92.CrossRefGoogle Scholar
  14. Bensinger SJ, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell. 2008;134(1):97–111.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berod L, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med. 2014;20(11):1327–33.PubMedCrossRefGoogle Scholar
  16. Bostrom P, et al. Hypoxia converts human macrophages into triglyceride-loaded foam cells. Arterioscler Thromb Vasc Biol. 2006;26(8):1871–6.PubMedCrossRefGoogle Scholar
  17. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.PubMedCrossRefGoogle Scholar
  18. Burkart EM, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117(12):3930–9.PubMedPubMedCentralGoogle Scholar
  19. Calder PC, et al. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br J Nutr. 2013;109(Suppl 1):S1–34.PubMedCrossRefGoogle Scholar
  20. Campbell FM, et al. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem. 2002;277(6):4098–103.PubMedCrossRefGoogle Scholar
  21. Carroll KC, Viollet B, Suttles J. AMPKalpha1 deficiency amplifies proinflammatory myeloid APC activity and CD40 signaling. J Leukoc Biol. 2013;94(6):1113–21.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chakrabarti P, et al. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes. 2010;59(4):775–81.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chakrabarti P, et al. SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL. J Lipid Res. 2011;52(9):1693–701.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chanda PK, et al. Monoacylglycerol lipase activity is a critical modulator of the tone and integrity of the endocannabinoid system. Mol Pharmacol. 2010;78(6):996–1003.PubMedCrossRefGoogle Scholar
  25. Chang CH, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chimenti MS, et al. Metabolic profiling of human CD4+cells following treatment with methotrexate and anti-TNF-alpha infliximab. Cell Cycle. 2013;12(18):3025–36.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chinetti G, et al. Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res. 2003;92(2):212–7.PubMedCrossRefGoogle Scholar
  28. Daval M, et al. Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem. 2005;280(26):25250–7.PubMedCrossRefGoogle Scholar
  29. Dentin R, et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem. 2004;279(19):20314–26.PubMedCrossRefGoogle Scholar
  30. Du H, et al. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum Mol Genet. 1998;7(9):1347–54.PubMedCrossRefGoogle Scholar
  31. Du H, et al. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther. 2002;13(11):1361–72.PubMedCrossRefGoogle Scholar
  32. Dubland JA, Francis GA. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol. 2015;3:3.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dunn WB, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6(7):1060–83.PubMedCrossRefGoogle Scholar
  34. Enerback S, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387(6628):90–4.PubMedCrossRefGoogle Scholar
  35. Falvo JV, et al. Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol. 2013;118:37–128.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Finck BN, et al. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109(1):121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Floess S, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5(2):e38.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5(11):844–52.PubMedCrossRefGoogle Scholar
  39. Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002;16(6):769–77.PubMedCrossRefGoogle Scholar
  40. Furuta E, et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 2008;68(4):1003–11.PubMedCrossRefGoogle Scholar
  41. Galic S, et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest. 2011;121(12):4903–15.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gauthier MS, et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem. 2008;283(24):16514–24.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Ghesquiere B, et al. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511(7508):167–76.PubMedCrossRefGoogle Scholar
  44. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 2001;15(7):807–26.PubMedCrossRefGoogle Scholar
  45. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32(5):593–604.PubMedCrossRefGoogle Scholar
  46. Graner E, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell. 2004;5(3):253–61.PubMedCrossRefGoogle Scholar
  47. Haemmerle G, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med. 2011;17(9):1076–85.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Horejsi V. Lipid rafts and their roles in T-cell activation. Microbes Infect. 2005;7(2):310–6.PubMedCrossRefGoogle Scholar
  49. Hossain F, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 2015;3(11):1236–47.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 2010;33(5):469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Huang SC, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 2014a;15(9):846–55.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang Y, et al. Kidney tissue targeted metabolic profiling of glucocorticoid-induced osteoporosis and the proposed therapeutic effects of Rhizoma Drynariae studied using UHPLC/MS/MS. Biomed Chromatogr. 2014b;28(6):878–84.PubMedCrossRefGoogle Scholar
  53. Ibrahim J, et al. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology. 2012;143(4):1061–72.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Iizuka K, et al. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101(19):7281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Joseph SB, et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 2002;99(11):7604–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kabashima T, et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A. 2003;100(9):5107–12.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kaul D. Molecular link between cholesterol, cytokines and atherosclerosis. Mol Cell Biochem. 2001;219(1–2):65–71.PubMedCrossRefGoogle Scholar
  58. Kidani Y, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol. 2013;14(5):489–99.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kim KH. Regulation of mammalian acetyl-coenzyme A carboxylase. Annu Rev Nutr. 1997;17:77–99.PubMedCrossRefGoogle Scholar
  60. Kliewer SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A. 1997;94(9):4318–23.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Klotz L, et al. The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 2009;206(10):2079–89.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Koslinski P, et al. Metabolic profiling of pteridines for determination of potential biomarkers in cancer diseases. Electrophoresis. 2011;32(15):2044–54.PubMedCrossRefGoogle Scholar
  63. Kremmyda LS, et al. Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. Part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(3):195–218.PubMedCrossRefGoogle Scholar
  64. Krishnan S, Alden N, Lee K. Pathways and functions of gut microbiota metabolism impacting host physiology. Curr Opin Biotechnol. 2015;36:137–45.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kudo N, et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem. 1995;270(29):17513–20.PubMedCrossRefGoogle Scholar
  66. Kuhajda FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 2006;66(12):5977–80.PubMedCrossRefGoogle Scholar
  67. Ladygina N, Martin BR, Altman A. Dynamic palmitoylation and the role of DHHC proteins in T cell activation and anergy. Adv Immunol. 2011;109:1–44.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lass A, et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 2006;3(5):309–19.PubMedCrossRefGoogle Scholar
  69. Lass A, et al. Lipolysis – a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res. 2011;50(1):14–27.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Latasa MJ, et al. Nutritional regulation of the fatty acid synthase promoter in vivo: sterol regulatory element binding protein functions through an upstream region containing a sterol regulatory element. Proc Natl Acad Sci U S A. 2000;97(19):10619–24.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lea W, et al. Long-chain acyl-CoA dehydrogenase is a key enzyme in the mitochondrial beta-oxidation of unsaturated fatty acids. Biochim Biophys Acta. 2000;1485(2–3):121–8.PubMedCrossRefGoogle Scholar
  72. Lehmann JM, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953–6.PubMedCrossRefGoogle Scholar
  73. Li SZ, et al. Predicting network activity from high throughput metabolomics. PLoS Comput Biol. 2013;9(7):e1003123.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lian X, et al. Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. Am J Physiol Lung Cell Mol Physiol. 2004;286(4):L801–7.PubMedCrossRefGoogle Scholar
  75. Liang G, et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem. 2002;277(11):9520–8.PubMedCrossRefGoogle Scholar
  76. Lowell BB, Spiegelman BM. Towards a molecular understanding of adaptive thermogenesis. Nature. 2000;404(6778):652–60.PubMedCrossRefGoogle Scholar
  77. Lubke T, Lobel P, Sleat DE. Proteomics of the lysosome. Biochim Biophys Acta. 2009;1793(4):625–35.PubMedCrossRefGoogle Scholar
  78. Magana MM, Osborne TF. Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. J Biol Chem. 1996;271(51):32689–94.PubMedCrossRefGoogle Scholar
  79. Malaviya AN. Landmark papers on the discovery of methotrexate for the treatment of rheumatoid arthritis and other systemic inflammatory rheumatic diseases: a fascinating story. Int J Rheum Dis. 2016;19(9):844–51.PubMedCrossRefGoogle Scholar
  80. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997;244(1):1–14.PubMedCrossRefGoogle Scholar
  81. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77.PubMedCrossRefGoogle Scholar
  82. Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4(1):61–70.PubMedCrossRefGoogle Scholar
  84. Miyoshi H, et al. Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes. J Biol Chem. 2007;282(2):996–1002.PubMedCrossRefGoogle Scholar
  85. Moon JY, Choi MH, Kim J. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases. Endocr Relat Cancer. 2016;23(10):R455–67.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mueller E, et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell. 1998;1(3):465–70.PubMedCrossRefGoogle Scholar
  87. Murray PJ, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Namgaladze D, et al. Inhibition of macrophage fatty acid beta-oxidation exacerbates palmitate-induced inflammatory and endoplasmic reticulum stress responses. Diabetologia. 2014;57(5):1067–77.PubMedCrossRefGoogle Scholar
  89. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.PubMedCrossRefGoogle Scholar
  90. Nwankwo JO, Robbins ME. Peroxisome proliferator-activated receptor- gamma expression in human malignant and normal brain, breast and prostate-derived cells. Prostaglandins Leukot Essent Fatty Acids. 2001;64(4–5):241–5.PubMedCrossRefGoogle Scholar
  91. O’Sullivan D, et al. Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity. 2014;41(1):75–88.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Odegaard JI, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature. 2007;447(7148):1116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ouimet M, et al. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. J Clin Invest. 2015;125(12):4334–48.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol. 2015;15(1):18–29.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pearce EL, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103–7.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pearce EL, et al. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342(6155):1242454.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Pierce SK. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002;2(2):96–105.PubMedCrossRefGoogle Scholar
  98. Puigserver P, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423(6939):550–5.PubMedCrossRefGoogle Scholar
  99. Radin M, et al. Infliximab Biosimilars in the treatment of inflammatory bowel diseases: a systematic review. BioDrugs. 2017;31(1):37–49.PubMedCrossRefGoogle Scholar
  100. Radner FP, et al. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI-58). J Biol Chem. 2010;285(10):7300–11.PubMedCrossRefGoogle Scholar
  101. Rathmell JC, et al. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol Cell. 2000;6(3):683–92.PubMedCrossRefGoogle Scholar
  102. Roessner U, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell. 2001;13(1):11–29.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rubic T, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol. 2008;9(11):1261–9.PubMedCrossRefGoogle Scholar
  104. Ruderman N, et al. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47(5):699–713.PubMedCrossRefGoogle Scholar
  105. Sag D, et al. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol. 2008;181(12):8633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Schlosburg JE, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13(9):1113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Schweiger M, et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem. 2006;281(52):40236–41.PubMedCrossRefGoogle Scholar
  108. Sears IB, et al. Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cell Biol. 1996;16(7):3410–9.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Shen WJ, et al. Functional interaction of hormone-sensitive lipase and perilipin in lipolysis. J Lipid Res. 2009;50(11):2306–13.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shimano H, et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J Clin Invest. 1997;100(8):2115–24.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shin HM, et al. Epigenetic modifications induced by Blimp-1 Regulate CD8(+) T cell memory progression during acute virus infection. Immunity. 2013;39(4):661–75.PubMedCrossRefGoogle Scholar
  112. Silina K, et al. Manipulation of tumour-infiltrating B cells and tertiary lymphoid structures: a novel anti-cancer treatment avenue? Cancer Immunol Immunother. 2014;63(7):643–62.PubMedCrossRefGoogle Scholar
  113. Singh N, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Soga T, et al. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2(5):488–94.PubMedCrossRefGoogle Scholar
  115. Stralfors P, Belfrage P. Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase. J Biol Chem. 1983;258(24):15146–52.PubMedGoogle Scholar
  116. Sugimoto M, et al. Non-targeted metabolite profiling in activated macrophage secretion. Metabolomics. 2012;8(4):624–33.CrossRefGoogle Scholar
  117. Tan Y, et al. Metabolic profiling reveals therapeutic biomarkers of processed Aconitum Carmichaeli Debx in treating hydrocortisone induced Kidney-Yang deficiency syndrome rats. J Ethnopharmacol. 2014;152(3):585–93.PubMedCrossRefGoogle Scholar
  118. Taschler U, et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem. 2011;286(20):17467–77.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Tvrzicka E, et al. Fatty acids as biocompounds: their role in human metabolism, health and disease--a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011;155(2):117–30.PubMedCrossRefGoogle Scholar
  120. Ufer M, et al. Metabolite profiling in early clinical drug development: current status and future prospects. Expert Opin Drug Metab Toxicol. 2017;13(8):803–6.PubMedCrossRefGoogle Scholar
  121. van der Windt GJ, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36(1):68–78.PubMedCrossRefGoogle Scholar
  122. Vats D, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138–43.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang Q, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010;327(5968):1004–7.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wenes M, et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 2016;24(5):701–15.PubMedCrossRefGoogle Scholar
  126. Wieman HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 2007;18(4):1437–46.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Wolman M. Wolman disease and its treatment. Clin Pediatr (Phila). 1995;34(4):207–12.CrossRefGoogle Scholar
  128. Wu X, et al. PD-1(+) CD8(+) T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. Br J Cancer. 2014;111(7):1391–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yamaguchi T, Sakaguchi S. Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol. 2006;16(2):115–23.PubMedCrossRefGoogle Scholar
  130. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22.PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yang K, et al. T cell exit from quiescence and differentiation into Th2 cells depend on raptor-mTORC1-mediated metabolic reprogramming. Immunity. 2013;39(6):1043–56.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhao S, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327(5968):1000–4.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhou JY, et al. Serum metabolite profiling of B-cell non-Hodgkin’s lymphoma using UPLC-QTOFMS and GC-TOFMS. Metabolomics. 2014;10(4):677–87.CrossRefGoogle Scholar
  134. Zhu MS, Zhang HY, Humphreys WG. Drug metabolite profiling and identification by high-resolution mass spectrometry. J Biol Chem. 2011;286(29):25419–25.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zimmermann R, et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306(5700):1383–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jing Qiu
    • 1
  • Fangming Liu
    • 2
  • Duojiao Wu
    • 3
    • 4
  1. 1.Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
  2. 2.Zhongshan Hospital Institute of Clinical Science, Fudan UniversityShanghaiChina
  3. 3.Shanghai Institute of Clinical BioinformaticsShanghaiChina
  4. 4.Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical SchoolShanghaiChina

Personalised recommendations