Advertisement

The Role of Lipid Metabolism in the Development of Lung Cancer

  • Lixin Wang
  • Weiling Huang
  • Xiu-Min LiEmail author
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 14)

Abstract

The increase of lipid synthesis in tumor tissues has been considered as an important component of substance and energy metabolism during cell transformation. In recent years, the role of lipids in the transformation of cells into tumors, tumor growth, invasion and metastasis have attracted much attention. This article reviews the effects of lipid metabolism related enzymes, membrane lipids and extracellular environment on the development of lung cancer. Finally, the application of lipid metabolism related drugs in lung cancer was briefly summarized.

Reference

  1. Aragane K, Tamai Y, Kusunoki J. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. Mol Cell Biol. 2007;27(5):1881–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol. 2017;7(9):170070.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brown M, Roulson J-A, Hart CA, Tawadros T, Clarke NW. Arachidonic acid induction of Rho-mediated transendothelial migration in prostate cancer. Br J Cancer. 2014;110(8):2099–108.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Byagowi S, NaserpourFarivar T, Najafipour R. Effect of PPARd agonist on stearoyl-CoA desaturase 1 in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. Can J Diabetes. 2015;39(2):123–7.CrossRefPubMedGoogle Scholar
  5. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen W-C, Wang C-Y, Hung Y-H, Weng T-Y, Yen M-C, Lai M-D. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme A synthetase family in cancer. Shridhar V, ed. PLoS One. 2016;11(5):e0155660.Google Scholar
  7. Corti F, Finetti F, Ziche M, Simons M. The syndecan-4/protein kinase Cα pathway mediates prostaglandin E2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo. J Biol Chem. 2013;288(18):12712–21.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Csanadi A, Kayser C, Donauer M. Prognostic value of malic enzyme and ATP-citrate lyase in non-small cell lung cancer of the young and the elderly. PLoS One. 2015;10(5):e0126357.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Daniëls VW, Smans K, Royaux I, Chypre M, Swinnen JV, Zaidi N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. Lobaccaro J-MA, ed. PLoS One. 2014; 9(9):e106913.Google Scholar
  10. Dayal R, Singh A, Pandey A, Mishra KP. Reactive oxygen species as mediator of tumor radiosensitivity. J Cancer Res Ther. 2014;10(4):811–8.CrossRefPubMedGoogle Scholar
  11. Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling. Cell Mol Life Sci, CMLS. 2015;72(20):3931–52.CrossRefPubMedGoogle Scholar
  12. Fan J, Kamphorst JJ, Mathew R, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 2013;9:712.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Foster DA. Phosphatidic acid and lipid sensing by mTOR. Trends Endocrinol Metab. 2013;24(6):272–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, Dong SW, et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol. 2015;8:22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goldkorn T, Chung S, Filosto S. Lung cancer and lung injury: the dual role of ceramide. Handb Exp Pharmacol. 2013;216:93–113.CrossRefGoogle Scholar
  16. Gómez de Cedrón M, Ramírez de Molina A. Microtargeting cancer metabolism: opening new therapeutic windows based on lipid metabolism. J Lipid Res. 2016;57(2):193–206.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo JY, Karsli-Uzunbas G, Mathew R. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013;27(13):1447–61.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hess D, Chisholm JW, Igal RA. Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One. 2010;5(6):e11394.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hopperton KE, Duncan RE, Bazinet RP, Archer MC. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res. 2014;320(2):302–10.CrossRefPubMedGoogle Scholar
  20. Huang C, Freter C. Lipid metabolism, apoptosis and cancer therapy. Lemarié A, ed. Int J Mol Sci 2015; 16(1):924–949.Google Scholar
  21. Huang S-W, Kao J-K, Wu C-Y, et al. Targeting aerobic glycolysis and HIF-1α expression enhance Imiquimod-induced apoptosis in cancer cells. Oncotarget. 2014;5(5):1363–81.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang J, Fan X-X, He J, et al. SCD1 is associated with tumor promotion, late stage and poor survival in lung adenocarcinoma. Oncotarget. 2016;7(26):39970–9.PubMedPubMedCentralGoogle Scholar
  23. Jeon S-M, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485(7400):661–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jerby L, Wolf L, Denkert C, et al. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. 2012;72(22):5712–20.CrossRefPubMedGoogle Scholar
  25. Jiang L, Wang H, Li J, et al. Up-regulated FASN expression promotes Transcoelomic metastasis of ovarian cancer cell through epithelial-mesenchymal transition. Int J Mol Sci. 2014;15(7):11539–54.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kamphorst JJ, Cross JR, Fan J. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A. 2013;110(22):8882–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Knobloch M, Braun SM, Zurkirchen L, et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature. 2013;493(7431):226–30.CrossRefPubMedGoogle Scholar
  28. Knoch F, Tarantola M, Bodenschatz E, Rappel W-J. Modeling self-organized spatio-temporal patterns of PIP3 and PTEN during spontaneous cell polarization. Phys Biol. 2014;11(4):046002.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kopf T, Schaefer H-L, Troetzmueller M, et al. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats. Oresic M, ed. PLoS One. 2014; 9(9):e106849.Google Scholar
  30. Książek M, Chacińska M, Chabowski A, Baranowski M. Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res. 2015;56(7):1271–81.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kuhajda FP, Jenner K, Wood FD, et al. Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A. 1994;91(14):6379–83.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lin R, Tao R, Gao X, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 2013;51(4):506–18.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Medes G, Thomas A, Weinhouse S. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res. 1953;13:27–9.PubMedGoogle Scholar
  34. Menendez JA, Lupu R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogene. 2017;6(2):e299.CrossRefGoogle Scholar
  35. Mojumdar EH, Helder RW, Gooris GS, Bouwstra JA. Monounsaturated fatty acids reduce the barrier of stratum corneum lipid membranes by enhancing the formation of a hexagonal lateral packing. Langmuir. 2014;30(22):6534–43.CrossRefPubMedGoogle Scholar
  36. Montagne K, Uchiyama H, Furukawa KS, Ushida T. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells. J Biomech. 2014;47(2):354–9.CrossRefPubMedGoogle Scholar
  37. Muro E, Atilla-Gokcumen GE, Eggert US. Lipids in cell biology: how can we understand them better? Bement W, ed. Mol Biol Cell 2014; 25(12):1819–1823.Google Scholar
  38. Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Nashed M, Chisholm JW, Igal RA. Stearoyl-CoA desaturase activity modulates the activation of epidermal growth factor receptor in human lung cancer cells. Exp Biol Med (Maywood). 2012;237(9):1007–17.CrossRefGoogle Scholar
  40. O’Neill HM, Lally JS, Galic S, et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia. 2014;57(8):1693–702.CrossRefPubMedGoogle Scholar
  41. Padanad MS, Konstantinidou G, Venkateswaran N, et al. Fatty acid oxidation mediated by Acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis. Cell Rep. 2016;16(6):1614–28.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52(3):249–76.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pisanu ME, Noto A, De Vitis C, et al. Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett. 2017;406:93–104.CrossRefPubMedGoogle Scholar
  44. Prior AM, Zhang M, Blakeman N, et al. Inhibition of long chain fatty Acyl-CoA Synthetase (ACSL) and ischemia reperfusion injury. Bioorg Med Chem Lett. 2014;24(4):1057–61.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Qiang L, Kon N, Zhao W, et al. Hepatic SirT1-dependent gain-of-function of stearoyl-CoA desaturase-1 conveys dysmetabolic and tumor progression functions. Cell Rep. 2015;11(11):1797–808.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Relat J, Blancafort A, Oliveras G. Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer. 2012;12:280.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Riaz A, Huang Y, Johansson S. G-protein-coupled lysophosphatidic acid receptors and their regulation of AKT signaling. Van Craenenbroeck K, Tikkanen R, eds. Int J Mol Sci. 2016;17(2):215.Google Scholar
  48. Sampath H, Ntambi JM. Role of stearoyl-CoA desaturase-1 in skin integrity and whole body energy balance. J Biol Chem. 2014;289(5):2482–8.CrossRefPubMedGoogle Scholar
  49. Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface. 2014;11(96):20140232.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shi J, Yang H, Duan X, Li L, Sun L, Li Q, et al. Apolipoproteins as differentiating and predictive markers for assessing clinical outcomes in patients with small cell lung Cancer. Yonsei Med J. 2016;57(3):549–56.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Simopoulos AP. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sounni NE, Cimino J, Blacher S, et al. Blocking lipid synthesis overcomes tumor regrowth and metastasis after antiangiogenic therapy withdrawal. Cell Metab. 2014;20(2):280–94.CrossRefPubMedGoogle Scholar
  53. Svensson RU, Parker SJ, Eichner LJ, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small cell lung cancer in preclinical models. Nat Med. 2016;22(10):1108–19.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ventura R, Mordec K, Waszczuk J. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2(8):808–24.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang Y, Zhang X, Tan W, Fu J, Zhang W. Significance of fatty acid synthase expression in non-small cell lung cancer. Zhonghuazhongliuzazhi [Chin J Oncol]. 2002;24(3):271–3.Google Scholar
  56. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–10.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yamanaka M, Tian Z, Darvish-Ghane S, Zhuo M. Pre-LTP requires extracellular signal-regulated kinase in the ACC. Mol Pain. 2016;12:174480691664737.CrossRefGoogle Scholar
  58. Yamashita T, Kamada H, Kanasaki S, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie. 2013;68(12):969–73.PubMedGoogle Scholar
  59. Yan S, Yang X-F, Liu H-L, Fu N, Ouyang Y, Qing K. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World J Gastroenterol, WJG. 2015;21(12):3492–8.CrossRefPubMedGoogle Scholar
  60. Zaidi N, Swinnen JV, Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012;72:3709–14.CrossRefPubMedGoogle Scholar
  61. Zaugg K, Yao Y, Reilly PT, et al. Carnitinepalmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011;25(10):1041–51.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zhang Y, Wang H, Zhang J, et al. Positive feedback loop and synergistic effects between hypoxia-inducible factor-2α and stearoyl-CoA desaturase-1 promote tumorigenesis in clear cell renal cell carcinoma. Cancer Sci. 2013;104(4):416–22.CrossRefPubMedGoogle Scholar
  63. Zhang J, Song F, Zhao X, et al. EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer. 2017;16:127.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Zordoky BN, Nagendran J, Pulinilkunnil T. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation. Circ Res. 2014;115(5):518–24.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Integrated Traditional Chinese and Western Medicine, Shanghai Pulmonary HospitalTongji UniversityShanghaiChina
  2. 2.Graduate schoolShanghai University of Traditional Chinese MedicineShanghaiChina
  3. 3.Center of Integrative Medicine for Allergies and WellnessIcahn School of Medicine at Mount SinaiNYUSA

Personalised recommendations