Advertisement

An Analytical Review of Different Approaches for Detection and Analysis of Electrocardiographic ST Segment

  • Akash Kumar Bhoi
  • Karma Sonam Sherpa
  • Bidita Khandelwal
  • Pradeep Kumar Mallick
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 768)

Abstract

ST segment analysis is significantly a critical non-invasive pointer to identify ischemic unsettling influences. It has been considered from the start of the electrocardiography on the ground that critical cardiovascular conditions are one of the fundamental drivers of death on the planet and ischemic aggravations are a standout amongst the most vital heart conditions. Most basic Sudden Cardiac Deaths (SCDs) are triggered by Coronary heart disease (CHD). This study is for promising investigation for ST segment discovery and determination of Coronary heart disease. Different presented techniques and algorithms are concisely discussed on ST segment detection and analysis of this segment for possible identification of cardiovascular abnormalities.

Keywords

Electrocardiography ST segment Ischemia Arrhythmia Coronary heart disease 

References

  1. 1.
    Gettes, L.S., Cascio, W.E.: Effects of acute ischemia on cardiac electrophysiology. In: Fozzard, H.A., et a1. (eds.) The Heart and Cardiovascular System, vol. 2, pp. 2021–2054. Raven Press (1991)Google Scholar
  2. 2.
    Goldschlager, N., Goldman, M.J.: Principles of Clinical Electrocardiography, East Norwalk, Connecticut, Prentice Hall Int (1989)Google Scholar
  3. 3.
    Gallino, A., Chierchia, S., Smith, G., Croom, M., Morgan, M., Marchesi, C., Maseri, A.: A computer system for analysis of ST segment changes on 24 hour Holter monitor tapes: comparison with other available systems. J. Arner. Col1. Cardiol. 4, 245–252 (1984)Google Scholar
  4. 4.
    Philips Medical Systems Nederland, B.V.: ST Segment Monitoring, ST/AR Algorithm, IntelliVue Patient Monitor and Information Center, Application Note, Koninklijke Philips Electronics N.V. (2006)Google Scholar
  5. 5.
    Ansari, S., et al.: A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records. IEEE Rev. Biomed. Eng. 264–298, 10 (2017)Google Scholar
  6. 6.
    Gallino, A., et al.: Computer system for analysis of ST segment changes on 24 hour Holter monitortapes: comparison with other available systems. J. Amer. College Cardiol. 4(2), 245–252 (1984)CrossRefGoogle Scholar
  7. 7.
    Oates, J., Cellar, B., Bernstein, L., Bailey, B.P., Freedman, S.B.: Real-time detection of ischemic ECG changes using quasi-orthogonal leads and artificial intelligence. Proc. IEEE Comput. Cardiol. 89–92 (1988)Google Scholar
  8. 8.
    Sun, G., et al.: Classification of normal and ischemia from BSPM by neural network approach. Proc. Annu. Int. Conf. Eng. Med. Biol. Soc. 1504–1505 (1988)Google Scholar
  9. 9.
    Passariello, G., Mora, F., De La Cruz, E., Gotoc, J., Cerreult, B.: Real time detection and quantification of ischemic ECG changes. In: Proceeding 12th Annual International Conference English Medical Biology Social, pp. 809–810 (1990)Google Scholar
  10. 10.
    Krucoff, M.W., et al.: Continuous computer-assisted electrocardiographic monitoring in patients with acute myocardial infarction: early experience. In: Proceedings IEEE Computers in Cardiology, pp. 197–200 (1989)Google Scholar
  11. 11.
    Jager, F., Mark, R., Moody, G., Divjak, S.: Analysis of transient ST segment changes during ambulatory monitoring using the Karhunen–Loeave transform. In: Proceedings IEEE Computers in Cardiology. pp. 691–694 (1992)Google Scholar
  12. 12.
    Thakor, N., Gramatikov, B., Mita, M.: Multiresolution wavelet analysis of ECG during ischemia and reperfusion. In: Proceedings IEEE Computers in Cardiology, pp. 895–898 (1993)Google Scholar
  13. 13.
    Brooks, D., On, H., MacLeod, R., Krim, H.: Analysis of changes in body surface potentials during PTCA-induced ischemia using the temporal wavelet transform. In: Proceedings IEEE Computers in Cardiology, pp. 329–332 (1994)Google Scholar
  14. 14.
    Sierra, G., et al.: Multiresolution decomposition of the signal averaged ECG in patients with myocardial infarction compared to a control group. In: Proceeding IEEE 17th Annual Conference English Medical Biology Social, vol. 2, pp. 1057–1058 (1995)Google Scholar
  15. 15.
    Lemire, D., Pharand, C., Rajaonah, J.-C., Dube, B., LeBlanc, A.-R.: Wavelet time entropy, T wave morphology and myocardial ischemia. IEEE Trans. Biomed. Eng. 47(7), 967–970 (2000)CrossRefGoogle Scholar
  16. 16.
    Gramatikov, B., Brinker, J., Yi-chun, S., Thakor, N.V.: Wavelet analysis and time-frequency distributions of the body surface ECG before and after angioplasty. Comput. Methods Programs Biomed. 62(2), 87–98 (2000)CrossRefGoogle Scholar
  17. 17.
    Banerjee, S., Mitra, M.: Cross wavelet transform based analysis of electrocardiogram signals. Int. J. Elect. Electron. Comput. Eng. 1(2), 88–92 (2012)Google Scholar
  18. 18.
    Weisner, S.J., Tompkins, W.J., Tompkins, B.M.: A compact, microprocessor-based ECG ST-segment analyser for the operator room. IEEE Trans. Biomed. Eng. 29, 642–649 (1982)CrossRefGoogle Scholar
  19. 19.
    Skordalakis, E.: Recognition of the shape of the ST segment in ECG waveforms. IEEE Trans. Biomed. Eng. 33, 972–974 (1986)Google Scholar
  20. 20.
    Hsia, P., Jenkins, J.M., Shitnoni, Y., Cage, K.P., Santigna, J., Pitt, B.: An automated system for ST segment and arrhythmia analysis in exercise radionuclide ventriculagraphy. IEEE Trans. Biomed. Eng. 33, 585–593 (1986)CrossRefGoogle Scholar
  21. 21.
    Anderson, C.M., Bragg-Remschel, D.A., Harrison, D.C.: An algorithm to analyse ST segment changes during ambulatory monitoring. In: Proceeding Computer in Cardiology, pp. 225–228 (1981)Google Scholar
  22. 22.
    ACCIAHA Special Report.: Guidelines for ambulatory electrocardiography. Circ. 79(1), 206–215 (1989)Google Scholar
  23. 23.
    Steven K.W., et al.: Myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. Intv. American Coll Cardiol. Found. 8(1) (2015)Google Scholar
  24. 24.
    Schmid, R., et al.: A correction formula for the ST-segment measurements of AC-coupled electrocardiograms. IEEE Trans. Biomed. Eng. 64(8) (2017)Google Scholar
  25. 25.
    Greenhut, S.E., Chadi, B.H., Lee, J.W., Jenkins, J.M., Nicklas, J.M.: An algorithm for the quantification of ST-T SEGMENT Variability, Academic Press, Inc. (1989)Google Scholar
  26. 26.
    Jane, R., Blasi, A., Garcia, J., Laguna, P.: Evaluation of an automatic threshold based detector of waveform limits in Holter ECG with the QT database. Comput. Cardiol. 24, 295–298 (1997)Google Scholar
  27. 27.
    Jager, F., Moody, G.B., Tadder, A.: Performance measures for algorithms to detect transient ischemic ST segment changes. IEEE Comput. Cardiol. IEEE Comput. Soc. Press. 369–372 (1991)Google Scholar
  28. 28.
    Gonzalez’, R., Caiiizares, M., Rodriguez, G., Meisijimilly, G.: A spatial study of the ST segment. In: Proceedings of the 25 annual international conference of the IEEE EMBS Cancun, Mexico September 17–21 (2003)Google Scholar
  29. 29.
    Jager, F., Mark, R.G., Moody, G.B., Divjak, S.: Analysis of transient ST segment changes during ambulatory monitoring using the karhunen-loeave transform. In: Computers in Cardiology, Proceedings of 1992 Oct 11, pp. 691–694. IEEE (1992)Google Scholar
  30. 30.
    Dimantaras, K.I., Stamkopoulos, T., Maglaveiras, N., Strintzis, M.: ST segment nonlinear principal component analysis for ischemia detection, Computers in Cardiology (1996)Google Scholar
  31. 31.
    García, J., Sornmo, L., Olmos, S., Laguna, P.: Automatic detection of ST-T complex changes on the ECG using filtered RMS difference series: application to ambulatory ischemia monitoring. IEEE Trans. Biomed. Eng. 47(9) (2000)Google Scholar
  32. 32.
    Bulusu, S.C., Faezipour, M., Ng, V., Nourani, M., Tamil, L.S., Banerjee, S.: Transient ST-segment episode detection for ECG beat classification, life science systems and applications workshop. LiSSA), IEEE/NIH. (2011)Google Scholar
  33. 33.
    Turitto, Gioia, El-Sherif, Nabil: Alternans of the ST segment in Variant Angina Incidence, time course and relation to ventricular arrhythmias during ambulatory electrocardiographic recording. Chest 93(3), 587–591 (1988)CrossRefGoogle Scholar
  34. 34.
    Weisner, J.S., Tompkins, W.J., Tompkins, B.M.: A compact, microprocessor based ECG ST-segment analyzer for the operating room, IEEE Trans. Biomed. Eng. vol. BME-29, 624–648 (1983)Google Scholar
  35. 35.
    Skordalakis, E.: Recognition of the shape of the ST segment in ECG waveforms. IEEE Trans. Biomed. Eng. BME-33(10) (1986)Google Scholar
  36. 36.
    Pavlidis, D.: Waveform segmentation through functional approximation, IEEE Trans. Comput. C-22, 689–697 (1973)Google Scholar
  37. 37.
    Narayan, S.M., Lindsay, B.D., Smith, J.M.: Demonstration of the proarrhythmic preconditioning of single premature extrastimuli by use of the magnitude, phase, and distribution of repolarization alternans. Circ 100(18), 1887–1893 (1999)CrossRefGoogle Scholar
  38. 38.
    Li, X.Y., Wang, T., Zhou, P., Feng, H.Q.: ST-T complex automatic analysis of the electrocardiogram signals based on wavelet transform. In: Bioengineering Conference, 2003 IEEE 29th Annual, Proceedings, pp. 144–145. IEEE (2003)Google Scholar
  39. 39.
    Taddei, A., Biagini, A., et al.: The European ST-T database: development, distribution and use, Computers in Cardiology, Chicago, USA, 1990, pp. 177–80 (1991)Google Scholar
  40. 40.
    Andreão, R.V., Dorizzi, B. et al.: Transformée en ondelettes et modèles de Markov cachés pour la segmentation automatique du signal ECG. Proc. 19 ème colloque GRETSI, Paris, France (2003)Google Scholar
  41. 41.
    Andreão, R.V., Dorizzi, B., Boudy, J., Mota, J.C.M.: Online Beat Segmentation and Classification Through Hidden Markov Models. Proc. IIICLAEB, João Pessoa, Brazil (2004)Google Scholar
  42. 42.
    Andreao, R.V., Dorizzi, B., Boudy, J., Mota, J.C.M.: ST-segment analysis using hidden markov model beat segmentation: application to ischemia detection. Comput. Cardiol. 31, 381–384© IEEE (2004)Google Scholar
  43. 43.
    Xing, W., Liang, X., Zhongwei, S., Zibin, Y., & Yi, P.: Heart rate variability analysis of ischemic and heart rate related ST-segment deviation episodes based on time-frequency method. In: Proceedings of NFSI & ICFBI 2007, Hangzhou, China, October 12–14 (2007)Google Scholar
  44. 44.
    Hu, G.S.: Course for modern signal processing. Tsinghua University Press, Beijing (2004)Google Scholar
  45. 45.
    Kumar, A., Singh, M.: Ischemia detection using isoelectric energy function. Comput. Biol. Med. 68, 76–83 (2016)CrossRefGoogle Scholar
  46. 46.
    Dhruva, V.N., et al.: ST-Segment Analysis Using Wireless Technology in Acute Myocardial Infarction (STAT-MI) Trial. J. Am. Coll. Cardiol. 50(6), 509–513 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Akash Kumar Bhoi
    • 1
  • Karma Sonam Sherpa
    • 1
  • Bidita Khandelwal
    • 2
  • Pradeep Kumar Mallick
    • 3
  1. 1.Department of Electrical and Electronics EngineeringSikkim Manipal Institute of Technology (SMIT), Sikkim Manipal UniversityGangtokIndia
  2. 2.Department General Medicine, Central Referral Hospital and SMIMSSikkim Manipal UniversityGangtokIndia
  3. 3.Department of Computer Science and EngineeringVignana Bharathi Institute of Technology (VBIT)HyderabadIndia

Personalised recommendations