Advertisement

T Wave Analysis: Potential Marker of Arrhythmia and Ischemia Detection-A Review

  • Akash Kumar Bhoi
  • Karma Sonam Sherpa
  • Bidita Khandelwal
  • Pradeep Kumar Mallick
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 768)

Abstract

T wave is the end potential waveform or segment of cardiac cycle. It is basically originated by the different layers of ventricular myocardium and their differences in repolarization time. This study analyzes the conventional techniques and automatic popular methods associated with T Wave Alternans (TWA) and their approaches towards ischemic and arrhythmic interventions. This review work is divided into two major parts i.e. (i) Analysis of T wave: association of T wave with ischemia and arrhythmia (ii) T wave detection techniques. This analytical literature survey also leads to the conclusion, where the importance of T wave analysis significantly inculcates ideological researcher and clinical mindset for approaching critical cardiac diseases in multimodal approaches.

Keywords

T wave T wave alternans (TWA) Arrhythmia Ischemia 

References

  1. 1.
    Martínez, J.B., Olmos, S.: Methodological principles of t wave alternans analysis: a unified framework. IEEE Trans. Biomed. Eng. 52(4) (2005)Google Scholar
  2. 2.
    Hänninen, H., Takala, P., Rantonen, J., et al.: ST-T integral and T-wave amplitude in detection of exercise-induced myocardial ischemia evaluated with body surface potential mapping. J. Electrocardiol. 36(2) (2003)Google Scholar
  3. 3.
    Nearing, B.D., Oesterle, S.N., Verrier, R.L.: Quantification of ischaemia induced vulnerability by precordial T wave alternans analysis in dog and human. Cardiovasc. Res. 28, 1440–1449 (1994)CrossRefGoogle Scholar
  4. 4.
    Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Sci. 252, 437–440 (1991)CrossRefGoogle Scholar
  5. 5.
    Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92, 541–549 (2002)CrossRefGoogle Scholar
  6. 6.
    Martinez, J.P., Olmos, S., Wagner, G., Laguna, P.: Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE Trans. Biomed. Eng. 53, 701–711 (2006)CrossRefGoogle Scholar
  7. 7.
    Salah, S.A., Kristen, N.R., Mary, G.C.: Increased T wave complexity can indicate subclinical myocardial ischemia in asymptomatic adults. J. Electrocardiol. 44, 684–688 (2011)CrossRefGoogle Scholar
  8. 8.
    Estes III, N.A., Michaud, G., Zipes, D.P., El-Sherif, N., Venditti, F.J., Rosenbaum, D.S., Albrecht, P., Wang, P.J., Cohen, R.J.: Electrical alternans during rest and exercise as predictors of vulnerability to ventricular arrhythmias. Am. J. Cardiol. 80, 1314–1318 (1997)CrossRefGoogle Scholar
  9. 9.
    Zareba, W., Moss, A.J., Le Cessie, S., Hall, W.: T wave alternans in idiopathic long QT syndrome. J. Am. Coll. Cardiol. 23, 1541–1546 (1994)CrossRefGoogle Scholar
  10. 10.
    Kwan, T., Feit, A., Alam, M., Afflu, E., Clark, L.T.: ST-T alternans and myocardial ischemia. Angiol. 50(3), 217–222 (1999)CrossRefGoogle Scholar
  11. 11.
    Rosenbaum, D.S., Jackson, L.E., Smith, J.M., Garan, H., Ruskin, J.N., Cohen, R.J.: Electrical alternans and vulnerability to ventricular arrhytimias. N. Engl. J. Med. 330(4), 235–241 (1994)CrossRefGoogle Scholar
  12. 12.
    Verrier, R.L., Nearing, B.D., MacCallum, G., Stone, P.H.,: T-wave alternans during ambulatory ischemia in patients with stable coronary disease. Ann. Noninvasive Electrocardiol. pt. 1 1(2), 113–120 (1996)Google Scholar
  13. 13.
    Turitto, G., El-Sherif, N.: Alternans of the ST segment in variant angina. incidence, time course and relation to ventricular arrhythmias during ambulatory electrocardiographic recording. Chest 93, 587–591 (1988)CrossRefGoogle Scholar
  14. 14.
    Verrier, R.L., Nearing, B.D., LaRovere, M.T., Pinna, G.D., Mittleman, M.A., Bigger, J.T., Schwartz, P.J.: Ambulatory electrocardiogram- based tracking of T wave alternans in postmyocardial infarction patients to assess risk of cardiac arrest or arrhythmic death. J. Cardiovasc. Electrophysiol. 14(7), 705–711 (2003)CrossRefGoogle Scholar
  15. 15.
    Adachi, K., Ohnisch, Y., Shima, T., Yamashiro, K., Takei, A., Tamura, N., Yokoyama, M.: Determinant of microvolt-level T-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34(2), 374–380 (1999)CrossRefGoogle Scholar
  16. 16.
    Blanco-Velasco, M., et al.: Nonlinear trend estimation of the ventricular repolarization segment for T-Wave alternans detection. IEEE Trans. Biomed. Eng. 57(10) October (2010)Google Scholar
  17. 17.
    Narayan SM.: T-Wave alternans testing for ventricular arrhythmias. progress in cardiovascular diseases. 51(2), 118–127 (September/October) (2008)Google Scholar
  18. 18.
    Kleinfeld, M.J., Rozanski, J.J.: Alternans of the ST segment in Prinzmetal’s angina. Circ. 55, 574–577 (1977)CrossRefGoogle Scholar
  19. 19.
    Raeder, E.A., Rosenbaum, D.S., Bhasin, R., et al.: Alternans of electrocardiographic T-wave may predict lifethreatening ventricular arrhythmias. N. Engl. J. Med. 271–272 (1992)Google Scholar
  20. 20.
    Wellens, H.J.: Isolated electrical alternans of the T wave. Chest 62, 319–321 (1972)CrossRefGoogle Scholar
  21. 21.
    Smith, J.M., Clancy, E., Valeri, C., et al.: Electrical alternans and cardiac electrical instability. Circ. 77, 110–121 (1988)CrossRefGoogle Scholar
  22. 22.
    Gritzali, F., Frangakis, G., Papakonstantinou, G.: Detection of the P and T Waves in an ECG. Comput. Biomed. Res. 22, 83–91 (1989)CrossRefGoogle Scholar
  23. 23.
    Boix, M., Cantó, B., Cuesta, D., Micó, P.: Using the wavelet transform for T-wave alternans detection. Math. Comput. Model. 50, 738–742 (2009)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Costas, P., Dimitrios, I.F., Aristidis, L., Christos, S.S., Lampros, K.M.: Use of a novel rule-based expert system in the detection of changes in the ST segment and the T wave in long duration ECGs. J. Electrocardiol. 35(1) (2002)Google Scholar
  25. 25.
    Elgendi, M., Eskofier, B., Abbott, D.: Fast T wave detection calibrated by clinical knowledge with annotation of P and T waves. Sens. 15, 17693–17714 (2015)CrossRefGoogle Scholar
  26. 26.
    Pan, J., Tompkins, W.J.: A realtime QRS detection algorithm. IEEE Trans. BME 32, 230–236 (1985)CrossRefGoogle Scholar
  27. 27.
    Surawicz, B., Fisch, C.: Cardiac alternans: diverse mechanisms and clinical manifestations. J. Am. Coll. Cardiol. 20, 483 (1992)CrossRefGoogle Scholar
  28. 28.
    Verrier, R.L., Nearing, B.D.: Electrophysiologic basis for T-wave alternans as an index of vulnerability to ventricular fibrillation. J. Cardiovasc. Electrophysiol. 5, 445 (1994)CrossRefGoogle Scholar
  29. 29.
    Verrier, R.L., Cohen, R.J.: Risk identification and markers of susceptibility. In: Spooner P, Rosen MR. (eds.) Foundations of cardiac arrhythmias. Marcel Dekker, New York, NY, p. 745 (2000)Google Scholar
  30. 30.
    El-Sherif, N., Turitto, G., Pedalino, R.P., et al.: T-wave alternans and arrhythmia risk stratification. Ann. Noninvasiv. Electrocardiol. 6, 323 (2001)CrossRefGoogle Scholar
  31. 31.
    Smith, J.M., Clancy, E.A., Valeri, C.R., et al.: Electrical alternans and cardiac electrical instability. Circ. 77, 110 (1988)CrossRefGoogle Scholar
  32. 32.
    Nearing, B.D., Huang, A.H., Verrier, R.L.: Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave. Sci. 252, 437 (1991)CrossRefGoogle Scholar
  33. 33.
    Rosenbaum, D.S., Jackson, L.E., Smith, J.M., et al.: Electrical alternans and vulnerability to ventricular arrhythmia. N. Engl. J. Med. 330, 235 (1994)CrossRefGoogle Scholar
  34. 34.
    Nearing, B.D., Oesterle, S.N., Verrier, R.L.: Quantification of ischaemia-induced vulnerability by precordial T wave alternans analysis in dog and human. Cardiovasc. Res. 28, 1440 (1994)CrossRefGoogle Scholar
  35. 35.
    Hohnloser, S.H., Klingenheben, T., Yi-Gang, L., et al.: T-wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: Prospective comparison with conventional risk markers. J. Cardiovasc. Electrophysiol. 9, 1258 (1998)CrossRefGoogle Scholar
  36. 36.
    Adachi, K., Ohnishi, Y., Shima, T., et al.: Determinant of microvolt-level T-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34, 374 (1999)CrossRefGoogle Scholar
  37. 37.
    Klingenheben, T., Zabel, M., D’Agostino, R.B., et al.: Predictive value of T-wave alternans for arrhythmic events in patients with congestive heart failure. Lancet 356, 651 (2000)CrossRefGoogle Scholar
  38. 38.
    Gold, M.R., Bloomfield, D.M., Anderson, K.P., et al.: A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J. Am. Coll. Cardiol. 36, 2247 (2000)CrossRefGoogle Scholar
  39. 39.
    Hennersdorf, M.G., Neibch, V., Perings, C., et al.: T-wave alternans and ventricular arrhythmias in arterial hypertension. Hypertens. 37, 199 (2001)CrossRefGoogle Scholar
  40. 40.
    Nearing, B.D., Verrier, R.L.: Modified moving average method for T-wave alternans analysis with high accuracy to predict ventricular fibrillation. J. Appl. Physiol. 92, 541 (2002)CrossRefGoogle Scholar
  41. 41.
    Ikeda, T., Saito, H., Tanno, K., et al.: T-wave alternans as a predictor for sudden cardiac death after myocardial infarction. Am. J. Cardiol. 89, 79 (2002)CrossRefGoogle Scholar
  42. 42.
    Verrier, R.L., Nearing, B.D., LaRovere, M.T., et al.: Ambulatory ECG-based tracking of T-wave alternans in post-MI patients to assess risk of cardiac arrest or arrhythmic death. J. Cardiovasc. Electrophysiol. 14, 70S (2003)CrossRefGoogle Scholar
  43. 43.
    Richard, L.V., Bruce, D.N.: Ambulatory ECG monitoring of T-Wave alternans for arrhythmia risk assessment. J. Electrocardiol. 36(Supplement) (2003)Google Scholar
  44. 44.
    Kulvicius, T., Tamošiunaite, M., Vaišnys, R.: T wave alternans features for automated detection. Informatica 16(4), 587–602 (2005)Google Scholar
  45. 45.
    Krimi, S., Ouni, K., Ellouze, N.: T-Wave detection based on an adjusted wavelet transform modulus maxima. world academy of science, engineering and technology,. Int. J. Med. Health Sci. 1(3) (2007)Google Scholar
  46. 46.
    Khaustov, A., Nemati, S., Clifford, G.D.: An open-source Standard T-Wave alternans detector for benchmarking. Comput. Cardiol. 35, 509–512 (2008)Google Scholar
  47. 47.
    Martinez, J., Olmos, S., Laguna, P.: Evaluation of a wavelet based ECG waveform detector on the QT database. Comput. Cardiol. 2000(27), 81–84 (2000)Google Scholar
  48. 48.
    Mehta, S., Lingayat, N., Sanghvi, S.: Detection and delineation of P and T waves in 12-lead electrocardiograms. Expert Syst. 26(1) February (2009)Google Scholar
  49. 49.
    Goya-Esteban, R., et al.: Nonparametric signal processing validation in T-Wave alternans detection and estimation. IEEE Trans. Biomed. Eng. 61(4) April (2014)Google Scholar
  50. 50.
    Goldwasser, D., et al.: A new method of filtering T waves to detect hidden P waves in electrocardiogram signals. Europace 13, 1028–1033 (2011)CrossRefGoogle Scholar
  51. 51.
    Verrier, R.L., et al.: Microvolt T-Wave alternans, physiological basis, methods of measurement, and clinical utility—consensus guideline by international society for holter and noninvasive electrocardiology. J. Am. Coll. Cardiol. 58(13) (2011)Google Scholar
  52. 52.
    Cohen, R.J.: TWA and Laplacian imaging. In: Zipes D.P., Jalife J, (eds.) Cardiac electrophysiology: from cell to bedside, vol. 889, 5th edn. Saunders, Philadelphia (2009)Google Scholar
  53. 53.
    Nearing, B.D., Verrier, R.L.: Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy. J. Appl. Physiol. 92, 541–549 (2002)CrossRefGoogle Scholar
  54. 54.
    Wana, X., Li, Y., Xia, C., Wu, M., Liang, J., Wang, N.: A T-wave alternans assessment method based on least squares curve fitting technique. Meas. 86, 93–100 (2016)CrossRefGoogle Scholar
  55. 55.
    Latif, M., Bakhshi, A.D., Ali, U., Siddiqui, RA.: Empirical mode decomposition on T-Wave alternans detection. J. Image Graph. 4(2) December (2016)Google Scholar
  56. 56.
    Cesari, M., Mehlsen, J., Mehlsen, A.B., Sorensen, H.B.D.: A new wavelet-based ECG delineator for the evaluation of the ventricular innervation. IEEE J. Transl. Eng. Health Med. 4(5), 2000215 July (2017)Google Scholar
  57. 57.
    Ramanan, T., et al.: Does manual T-wave window adjustment affect microvolt T-wave alternans results in patients with structural heart disease? J. Electrocardiol. 49(6), 967–972, Nov—Dec (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Akash Kumar Bhoi
    • 1
  • Karma Sonam Sherpa
    • 1
  • Bidita Khandelwal
    • 2
  • Pradeep Kumar Mallick
    • 3
  1. 1.Department of Electrical and Electronics EngineeringSikkim Manipal Institute of Technology (SMIT), Sikkim Manipal UniversityGangtokIndia
  2. 2.Department General MedicineCentral Referral Hospital and SMIMS, Sikkim Manipal UniversityGangtokIndia
  3. 3.Department of Computer Science and EngineeringVignana Bharathi Institute of Technology (VBIT)HyderabadIndia

Personalised recommendations