Advertisement

Historical and Clinical Perspectives on Chromosomal Translocations

  • Ellen S. WilchEmail author
  • Cynthia C. Morton
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1044)

Abstract

Chromosomal translocations, rearrangements involving the exchange of segments between chromosomes, were documented in humans in 1959. The first accurately reported clinical phenotype resulting from a translocation was that of Down syndrome. In a small percentage of Down syndrome cases, an extra 21q is provided by a Robertsonian translocation chromosome, either occurring de novo or inherited from a phenotypically normal parent with the translocation chromosome and a balanced genome of 45 chromosomes. Balanced translocations, including both Robertsonian and reciprocal translocations, are typically benign, but meiosis in germ cells with balanced translocations may result in meiotic arrest and subsequent infertility, or in unbalanced gametes, with attendant risks of miscarriage and unbalanced progeny. Most reciprocal translocations are unique. A few to several percent of translocations disrupt haploinsufficient genes or their regulatory regions and result in clinical phenotypes. Balanced translocations from patients with clinical phenotypes have been valuable in mapping disease genes and in illuminating cis-regulatory regions. Mapping of discordant mate pairs from long-insert, low-pass genome sequencing now permits efficient and cost-effective discovery and nucleotide-level resolution of rearrangement breakpoints, information that is absolutely necessary for interpreting the etiology of clinical phenotypes in patients with rearrangements. Pathogenic translocations and other balanced chromosomal rearrangements constitute a class of typically highly penetrant mutation that is cryptic to both clinical microarray and exome sequencing. A significant proportion of rearrangements include additional complexity that is not visible by conventional karyotype analysis. Some proportion of patients with negative findings on exome/genome sequencing and clinical microarray will be found to have etiologic balanced rearrangements only discoverable by genome sequencing with analysis pipelines optimized to recover rearrangement breakpoints.

Keywords

Cytogenetics Karyotype Balanced translocation Breakpoint Congenital anomaly Gene mapping Mate-pair sequencing 

References

  1. 1.
    Bandyopadhyay R, Heller A, Knox-DuBois C, McCaskill C, Berend SA, Page SL, Shaffer LG (2002) Parental origin and timing of de novo Robertsonian translocation formation. Am J Hum Genet 71(6):1456–1462.  https://doi.org/10.1086/344662 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, McBride D, Golzio C, Fisher M, Perry P, Abadie V, Ayuso C, Holder-Espinasse M, Kilpatrick N, Lees MM, Picard A, Temple IK, Thomas P, Vazquez MP, Vekemans M, Roest Crollius H, Hastie ND, Munnich A, Etchevers HC, Pelet A, Farlie PG, Fitzpatrick DR, Lyonnet S (2009) Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 41(3):359–364.  https://doi.org/10.1038/ng.329 CrossRefPubMedGoogle Scholar
  3. 3.
    Bhatia S, Kleinjan DA (2014) Disruption of long-range gene regulation in human genetic disease: a kaleidoscope of general principles, diverse mechanisms and unique phenotypic consequences. Hum Genet 133(7):815–845.  https://doi.org/10.1007/s00439-014-1424-6 CrossRefPubMedGoogle Scholar
  4. 4.
    Book JA, Fraccaro M, Lindsten J (1959) Cytogenetical observations in mongolism. Acta Paediatr 48:453–468CrossRefPubMedGoogle Scholar
  5. 5.
    Boué A, Gallano P (1984) A collaborative study of the segregation of inherited chromosome structural rearrangements in 1356 prenatal diagnoses. Prenat Diagn 4 Spec No:45–67CrossRefPubMedGoogle Scholar
  6. 6.
    Carter CO, Hamerton JL, Polani PE, Gunalp A, Weller SD (1960) Chromosome translocation as a cause of familial mongolism. Lancet 2(7152):678–680CrossRefPubMedGoogle Scholar
  7. 7.
    Caspersson T, Zech L, Johansson C, Modest EJ (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 30(2):215–227CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    De Braekeleer M, Dao T-N (1990) Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod 5(5):519–528CrossRefPubMedGoogle Scholar
  9. 9.
    DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources. Firth HV et al (2009) Am J Hum Genet 84 524–533.  https://doi.org/10.1016/j.ajhg.2009.03.010
  10. 10.
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300(5894):765–767CrossRefPubMedGoogle Scholar
  11. 11.
    de Laat W, Duboule D (2013) Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502(7472):499–506.  https://doi.org/10.1038/nature12753 CrossRefPubMedGoogle Scholar
  12. 12.
    Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311.  https://doi.org/10.1126/science.1067799 CrossRefPubMedGoogle Scholar
  13. 13.
    Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380.  https://doi.org/10.1038/nature11082 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Edwards J, Fraccaro M, Davies P, Young R (1962) Structural heterozygosis in man: analysis of two families. Annals Hum Genet Lond 26:163–178CrossRefGoogle Scholar
  15. 15.
    Fantes J, Redeker B, Breen M, Boyle S, Brown J, Fletcher J, Jones S, Bickmore W, Fukushima Y, Mannens M (1995) Aniridia-associated cytogenetic rearrangements suggest that a position effect may cause the mutant phenotype. Hum Mol Genet 4(3):415–422CrossRefPubMedGoogle Scholar
  16. 16.
    Forabosco A, Percesepe A, Santucci S (2009) Incidence of non-age-dependent chromosomal abnormalities: a population-based study on 88965 amniocenteses. Eur J Hum Genet 17(7):897–903.  https://doi.org/10.1038/ejhg.2008.265 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ford CE, Hamerton JL (1956a) The chromosomes of man. Nature 178(4541):1020–1023CrossRefPubMedGoogle Scholar
  18. 18.
    Ford CE, Hamerton JL (1956b) A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol 31(6):247–251CrossRefPubMedGoogle Scholar
  19. 19.
    Ford CE, Jones KW, Miller OJ, Mittwoch U, Penrose LS, Ridler M, Shapiro A (1959) The chromosomes in a patient showing both mongolism and the Klinefelter syndrome. Lancet 1(7075):709–710CrossRefPubMedGoogle Scholar
  20. 20.
    Fraccaro M, Lindsten J, Ford CE, Iselius L (1980) The 11q;22q translocation: a European collaborative analysis of 43 cases. Hum Genet 56(1):21–51CrossRefPubMedGoogle Scholar
  21. 21.
    Funderburk SJ, Spence MA, Sparkes RS (1977) Mental retardation associated with “balanced” chromosome rearrangements. Am J Hum Genet 29(2):136–141PubMedPubMedCentralGoogle Scholar
  22. 22.
    Gordon CT, Attanasio C, Bhatia S, Benko S, Ansari M, Tan TY, Munnich A, Pennacchio LA, Abadie V, Temple IK, Goldenberg A, van Heyningen V, Amiel J, FitzPatrick D, Kleinjan DA, Visel A, Lyonnet S (2014) Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence. Hum Mutat 35(8):1011–1020.  https://doi.org/10.1002/humu.22606 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36(1):93–99CrossRefPubMedGoogle Scholar
  24. 24.
    Hamerton JL, Canning N, Ray M, Smith S (1975) A cytogenetic survey of 14,069 newborn infants I. Incidence of chromosome abnormalities. Clin Genet 8(4):223–243CrossRefPubMedGoogle Scholar
  25. 25.
    Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983) Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306(5940):239–242CrossRefPubMedGoogle Scholar
  26. 26.
    Higgins AW, Alkuraya FS, Bosco AF, Brown KK, Bruns GA, Donovan DJ, Eisenman R, Fan Y, Farra CG, Ferguson HL, Gusella JF, Harris DJ, Herrick SR, Kelly C, Kim HG, Kishikawa S, Korf BR, Kulkarni S, Lally E, Leach NT, Lemyre E, Lewis J, Ligon AH, Lu W, Maas RL, MacDonald ME, Moore SD, Peters RE, Quade BJ, Quintero-Rivera F, Saadi I, Shen Y, Shendure J, Williamson RE, Morton CC (2008) Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am J Hum Genet 82(3):712–722.  https://doi.org/10.1016/j.ajhg.2008.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hook EB, Hamerton JL (1978) Analyses of data on rates of cytogenetic disorders in live births. Am J Hum Genet 30(3):330–331PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hook EB, Schreinemachers DM, Willey AM, Cross PK (1983) Rates of mutant structural chromosome rearrangements in human fetuses: data from prenatal cytogenetic studies and associations with maternal age and parental mutagen exposure. Am J Hum Genet 35(1):96–109PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hsu TC (1952) Mammalian chromosomes in vitro I. The karyotype of man. J Hered 44:167–172CrossRefGoogle Scholar
  30. 30.
    Hsu TC, Pomerat CM (1953) Mammalian chromosomes in vitro II. A method for spreading the chromosomes of cells in tissue culture. J Heredity 44:23–29CrossRefGoogle Scholar
  31. 31.
    Huang N, Lee I, Marcotte EM, Hurles ME (2010) Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 6(10):e1001154.  https://doi.org/10.1371/journal.pgen.1001154 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hungerford DA, Donnelly AJ, Nowell PC, Beck S (1959) The chromosome constitution of a human phenotypic intersex. Am J Hum Genet 11:215–236PubMedPubMedCentralGoogle Scholar
  33. 33.
    Imaizumi K, Kimura J, Matsuo M, Kurosawa K, Masuno M, Niikawa N, Kuroki Y (2002) Sotos syndrome associated with a de novo balanced reciprocal translocation t(5;8)(q35;q24.1). Am J Med Genet 107(1):58–60CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jacobs PA (1974) Correlation between euploid structural chromosome rearrangements and mental subnormality in humans. Nature 249(453):164–165CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jacobs PA, Baikie AG, Court Brown WM, Strong JA (1959) The somatic chromosomes in mongolism. Lancet 1(7075):710CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jacobs PA, Browne C, Gregson N, Joyce C, White H (1992) Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet 29(2):103–108CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kato T, Kurahashi H, Emanuel BS (2012) Chromosomal translocations and palindromic AT-rich repeats. Curr Opin Genet Dev 22(3):221–228.  https://doi.org/10.1016/j.gde.2012.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, Lally E, Weiss LA, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris DJ, Noens I, Pauls DL, Daly MJ, MacDonald ME, Morton CC, Quade BJ, Gusella JF (2008) Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82(1):199–207.  https://doi.org/10.1016/j.ajhg.2007.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kleinjan DA, van Heyningen V (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet 76(1):8–32.  https://doi.org/10.1086/426833 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37(3):1035–1042CrossRefPubMedGoogle Scholar
  41. 41.
    Kurotaki N, Imaizumi K, Harada N, Masuno M, Kondoh T, Nagai T, Ohashi H, Naritomi K, Tsukahara M, Makita Y, Sugimoto T, Sonoda T, Hasegawa T, Chinen Y, Tomita Ha HA, Kinoshita A, Mizuguchi T, Yoshiura Ki K, Ohta T, Kishino T, Fukushima Y, Niikawa N, Matsumoto N (2002) Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet 30(4):365–366.  https://doi.org/10.1038/ng863 CrossRefPubMedGoogle Scholar
  42. 42.
    Ledbetter DH, Rich DC, O’Connell P, Leppert M, Carey JC (1989) Precise localization of NF1 to 17q11.2 by balanced translocation. Am J Hum Genet 44(1):20–24PubMedPubMedCentralGoogle Scholar
  43. 43.
    Lejeune J, Gautier M, Turpin R (1959) Study of somatic chromosomes from 9 mongoloid children. C R Hebd Seances Acad Sci 248(11):1721–1722PubMedGoogle Scholar
  44. 44.
    Lejeune J, Turpin R, Decourt J (1960) Chromosome aberrations and human diseases XXY Klinefelter’s syndrome from 46 chromosomes caused by T-T centromeric fusion. C R Hebd Seances Acad Sci 250:2468–2470PubMedGoogle Scholar
  45. 45.
    Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, Goode D, Elgar G, Hill RE, de Graaff E (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12(14):1725–1735CrossRefPubMedGoogle Scholar
  46. 46.
    Lettice LA, Horikoshi T, Heaney SJ, van Baren MJ, van der Linde HC, Breedveld GJ, Joosse M, Akarsu N, Oostra BA, Endo N, Shibata M, Suzuki M, Takahashi E, Shinka T, Nakahori Y, Ayusawa D, Nakabayashi K, Scherer SW, Heutink P, Hill RE, Noji S (2002) Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci U S A 99(11):7548–7553.  https://doi.org/10.1073/pnas.112212199 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Liang S, Tippens ND, Zhou Y, Mort M, Stenson PD, Cooper DN, Yu H (2017) iRegNet3D: three-dimensional integrated regulatory network for the genomic analysis of coding and non-coding disease mutations. Genome Biol 18(1):10.  https://doi.org/10.1186/s13059-016-1138-2 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lupiáñez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161(5):1012–1025.  https://doi.org/10.1016/j.cell.2015.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lupiáñez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32(4):225–237.  https://doi.org/10.1016/j.tig.2016.01.003 CrossRefPubMedGoogle Scholar
  50. 50.
    MacGregor DJ, Imrie S, Tolmie JL (1989) Outcome of de novo balanced translocations ascertained prenatally. J Med Genet 26(9):590–591CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mackie Ogilvie C, Scriven PN (2002) Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos. Eur J Hum Genet 10(12):801–806.  https://doi.org/10.1038/sj.ejhg.5200895 CrossRefPubMedGoogle Scholar
  52. 52.
    Maroun C, Schmerler S, Hutcheon RG (1994) Child with Sotos phenotype and a 5:15 translocation. Am J Med Genet 50(3):291–293.  https://doi.org/10.1002/ajmg.1320500313 CrossRefPubMedGoogle Scholar
  53. 53.
    Moorhead PS, Nowell PC, Mellman WJ, Battips DM, Hungerford DA (1960) Chromosome preparations of leukocytes cultured from human peripheral blood. Exp Cell Res 20:613–616CrossRefPubMedGoogle Scholar
  54. 54.
    Morel F, Douet-Guilbert N, Le Bris MJ, Herry A, Amice V, Amice J, De Braekeleer M (2004) Meiotic segregation of translocations during male gametogenesis. Int J Androl 27(4):200–212.  https://doi.org/10.1111/j.1365-2605.2004.00490.x CrossRefPubMedGoogle Scholar
  55. 55.
    Mutton D, Alberman E, Hook EB (1996) Cytogenetic and epidemiological findings in down syndrome, England and Wales 1989 to 1993. National down Syndrome Cytogenetic Register and the Association of Clinical Cytogeneticists. J Med Genet 33(5):387–394CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nielsen J, Krag-Olsen B (1981) Follow-up of 32 children with autosomal translocations found among 11,148 consecutively newborn children from 1969 to 1974. Clin Genet 20(1):48–54CrossRefPubMedGoogle Scholar
  57. 57.
    Nielsen J, Wohlert M (1991) Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet 87(1):81–83CrossRefPubMedGoogle Scholar
  58. 58.
    Nilsson D, Pettersson M, Gustavsson P, Förster A, Hofmeister W, Wincent J, Zachariadis V, Anderlid BM, Nordgren A, Mäkitie O, Wirta V, Käller M, Vezzi F, Lupski JR, Nordenskjöld M, Lundberg ES, Carvalho CMB, Lindstrand A (2017) Whole-genome sequencing of cytogenetically balanced chromosome translocations identifies potentially pathological gene disruptions and highlights the importance of microhomology in the mechanism of formation. Hum Mutat 38(2):180–192.  https://doi.org/10.1002/humu.23146 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nowell PC, Hungerford DA (1960) Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25:85–109PubMedGoogle Scholar
  60. 60.
    Oliver-Bonet M, Navarro J, Carrera M, Egozcue J, Benet J (2002) Aneuploid and unbalanced sperm in two translocation carriers: evaluation of the genetic risk. Mol Hum Reprod 8(10):958–963CrossRefPubMedGoogle Scholar
  61. 61.
    Ordulu Z, Kammin T, Brand H, Pillalamarri V, Redin CE, Collins RL, Blumenthal I, Hanscom C, Pereira S, Bradley I, Crandall BF, Gerrol P, Hayden MA, Hussain N, Kanengisser-Pines B, Kantarci S, Levy B, Macera MJ, Quintero-Rivera F, Spiegel E, Stevens B, Ulm JE, Warburton D, Wilkins-Haug LE, Yachelevich N, Gusella JF, Talkowski ME, Morton CC (2016) Structural chromosomal rearrangements require nucleotide-level resolution: lessons from next-generation sequencing in prenatal diagnosis. Am J Hum Genet 99(5):1015–1033.  https://doi.org/10.1016/j.ajhg.2016.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ozawa N, Maruyama T, Nagashima T, Ono M, Arase T, Ishimoto H, Yoshimura Y (2008) Pregnancy outcomes of reciprocal translocation carriers who have a history of repeated pregnancy loss. Fertil Steril 90(4):1301–1304.  https://doi.org/10.1016/j.fertnstert.2007.09.051 CrossRefPubMedGoogle Scholar
  63. 63.
    Page SL, Shaffer LG (1997) Nonhomologous Robertsonian translocations form predominantly during female meiosis. Nat Genet 15(3):231–232.  https://doi.org/10.1038/ng0397-231 CrossRefPubMedGoogle Scholar
  64. 64.
    Penrose LS (1933) The relative effects of paternal and maternal age in mongolism. Reproduced in 2009. J Genet 88(1):9–14CrossRefGoogle Scholar
  65. 65.
    Penrose LS, Ellis JR, Delhanty JD (1960) Chromosomal translocations in mongolism and in normal relatives. Lancet 2(7147):409–410CrossRefPubMedGoogle Scholar
  66. 66.
    Perrin A, Morel F, Douet-Guilbert N, Le Bris MJ, Amice J, Amice V, De Braekeleer M (2010) A study of meiotic segregation of chromosomes in spermatozoa of translocation carriers using fluorescent in situ hybridisation. Andrologia 42(1):27–34.  https://doi.org/10.1111/j.1439-0272.2009.00951.x CrossRefPubMedGoogle Scholar
  67. 67.
    Polani PE, Briggs JH, Ford CE, Clarke CM, Berg JM (1960) A Mongol girl with 46 chromosomes. Lancet 1(7127):721–724CrossRefPubMedGoogle Scholar
  68. 68.
    Primerano A, Colao E, Villella C, Nocera MD, Ciambrone A, Luciano E, D’Antona L, Vismara MFM, Loddo S, Novelli A, Perrotti N, Malatesta P (2015) A cryptic balanced translocation (5;17), a puzzle revealed through a critical evaluation of the pedigree and a FISH focused on candidate loci suggested by the phenotype. Mol Cytogenet 8:70.  https://doi.org/10.1186/s13039-015-0172-1 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Quintero-Rivera F, Xi QJ, Keppler-Noreuil KM, Lee JH, Higgins AW, Anchan RM, Roberts AE, Seong IS, Fan X, Lage K, Lu LY, Tao J, Hu X, Berezney R, Gelb BD, Kamp A, Moskowitz IP, Lacro RV, Lu W, Morton CC, Gusella JF, Maas RL (2015) MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Hum Mol Genet 24(8):2375–2389.  https://doi.org/10.1093/hmg/ddv004 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680.  https://doi.org/10.1016/j.cell.2014.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Redin C, Brand H, Collins RL, Kammin T, Mitchell E, Hodge JC, Hanscom C, Pillalamarri V, Seabra CM, Abbott MA, Abdul-Rahman OA, Aberg E, Adley R, Alcaraz-Estrada SL, Alkuraya FS, An Y, Anderson MA, Antolik C, Anyane-Yeboa K, Atkin JF, Bartell T, Bernstein JA, Beyer E, Blumenthal I, Bongers EM, Brilstra EH, Brown CW, Brüggenwirth HT, Callewaert B, Chiang C, Corning K, Cox H, Cuppen E, Currall BB, Cushing T, David D, Deardorff MA, Dheedene A, D’Hooghe M, de Vries BB, Earl DL, Ferguson HL, Fisher H, FitzPatrick DR, Gerrol P, Giachino D, Glessner JT, Gliem T, Grady M, Graham BH, Griffis C, Gripp KW, Gropman AL, Hanson-Kahn A, Harris DJ, Hayden MA, Hill R, Hochstenbach R, Hoffman JD, Hopkin RJ, Hubshman MW, Innes AM, Irons M, Irving M, Jacobsen JC, Janssens S, Jewett T, Johnson JP, Jongmans MC, Kahler SG, Koolen DA, Korzelius J, Kroisel PM, Lacassie Y, Lawless W, Lemyre E, Leppig K, Levin AV, Li H, Liao EC, Lim C, Lose EJ, Lucente D, Macera MJ, Manavalan P, Mandrile G, Marcelis CL, Margolin L, Mason T, Masser-Frye D, McClellan MW, Mendoza CJ, Menten B, Middelkamp S, Mikami LR, Moe E, Mohammed S, Mononen T, Mortenson ME, Moya G, Nieuwint AW, Ordulu Z, Parkash S, Pauker SP, Pereira S, Perrin D, Phelan K, Aguilar RE, Poddighe PJ, Pregno G, Raskin S, Reis L, Rhead W, Rita D, Renkens I, Roelens F, Ruliera J, Rump P, Schilit SL, Shaheen R, Sparkes R, Spiegel E, Stevens B, Stone MR, Tagoe J, Thakuria JV, van Bon BW, van de Kamp J, van Der Burgt I, van Essen T, van Ravenswaaij-Arts CM, van Roosmalen MJ, Vergult S, Volker-Touw CM, Warburton DP, Waterman MJ, Wiley S, Wilson A, Yerena-de Vega MC, Zori RT, Levy B, Brunner HG, de Leeuw N, Kloosterman WP, Thorland EC, Morton CC, Gusella JF, Talkowski ME (2017) The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet 49(1):36–45.  https://doi.org/10.1038/ng.3720 CrossRefPubMedGoogle Scholar
  72. 72.
    Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, Ledbetter DH, Maglott DR, Martin CL, Nussbaum RL, Plon SE, Ramos EM, Sherry ST, Watson MS, ClinGen (2015) ClinGen--the clinical genome resource. N Engl J Med 372(23):2235–2242.  https://doi.org/10.1056/NEJMsr1406261 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rowley JD (1973) Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243(5405):290–293CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Schmid W (1962) A familial chromosome abnormality associated with repeated abortions. Cytogenetics 1:199–209CrossRefPubMedGoogle Scholar
  75. 75.
    Schmidt MA, Michels VV, Dewald GW (1987) Cases of neurofibromatosis with rearrangements of chromosome 17 involving band 17q11.2. Am J Med Genet 28:771–777CrossRefGoogle Scholar
  76. 76.
    Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2(7731):971–972CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shaffer LG, Jackson-Cook CK, Meyer JM, Brown JA, Spence JE (1991) A molecular genetic approach to the identification of isochromosomes of chromosome 21. Hum Genet 86(4):375–382CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sheridan MB, Kato T, Haldeman-Englert C, Jalali GR, Milunsky JM, Zou Y, Klaes R, Gimelli G, Gimelli S, Gemmill RM, Drabkin HA, Hacker AM, Brown J, Tomkins D, Shaikh TH, Kurahashi H, Zackai EH, Emanuel BS (2010) A palindrome-mediated recurrent translocation with 3:1 meiotic nondisjunction: the t(8;22)(q24.13;q11.21). Am J Hum Genet 87(2):209–218.  https://doi.org/10.1016/j.ajhg.2010.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315(6020):550–554CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sugiura-Ogasawara M, Aoki K, Fujii T, Fujita T, Kawaguchi R, Maruyama T, Ozawa N, Sugi T, Takeshita T, Saito S (2008) Subsequent pregnancy outcomes in recurrent miscarriage patients with a paternal or maternal carrier of a structural chromosome rearrangement. J Hum Genet 53(7):622–628.  https://doi.org/10.1007/s10038-008-0290-2 CrossRefPubMedGoogle Scholar
  81. 81.
    Sumner AT, Evans HJ, Buckland RA (1971) New technique for distinguishing between human chromosomes. Nat New Biol 232(27):31–32CrossRefPubMedGoogle Scholar
  82. 82.
    Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, Kirby A, Liu S, Muddukrishna B, Ohsumi TK, Shen Y, Borowsky M, Daly MJ, Morton CC, Gusella JF (2011) Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet 88(4):469–481.  https://doi.org/10.1016/j.ajhg.2011.03.013 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79(24):7837–7841CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Thomas NS, Morris JK, Baptista J, Ng BL, Crolla JA, Jacobs PA (2010) De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. J Med Genet 47(2):112–115.  https://doi.org/10.1136/jmg.2009.069716 CrossRefPubMedGoogle Scholar
  85. 85.
    Tierney I, Axworthy D, Smith L, Ratcliffe SG (1984) Balanced rearrangements of the autosomes: results of a longitudinal study of a newborn survey population. J Med Genet 21(1):45–51CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Tjio JH, Levan A (1956) The chromosome number of man. Hereditas 42:1–6CrossRefGoogle Scholar
  87. 87.
    Turpin R, Lejeune J (1969) Human Afflications and Chromosomal Aberrations. Translation based on Les Chromosomes Humains (caryotype normal et variations pathologiques), Gauthier-Villars, 1965. International series of monographs in pure and applied biology. Modern trends in physiological sciences, vol 32. Pergamon Press, OxfordGoogle Scholar
  88. 88.
    Turpin R, Lejeune J, Lafourcade J, Gautier M (1959) Chromosome aberrations & human diseases; multiple spinal abnormalities with 45 chromosomes. C R Hebd Seances Acad Sci 248(25):3636–3638PubMedGoogle Scholar
  89. 89.
    Van Dyke DL, Weiss L, Roberson JR, Babu VR (1983) The frequency and mutation rate of balanced autosomal rearrangements in man estimated from prenatal genetic studies for advanced maternal age. Am J Hum Genet 35 (2):301–308.Google Scholar
  90. 90.
    Vincent MC, Daudin M, De MP, Massat G, Mieusset R, Pontonnier F, Calvas P, Bujan L, Bourrouillout G (2002) Cytogenetic investigations of infertile men with low sperm counts: a 25-year experience. J Androl 23(1):18–22. discussion 44–15CrossRefPubMedGoogle Scholar
  91. 91.
    Walker S, Harris R (1962) Investigation of family showing transmission of a 13-15 chromosomal translocation (Denver classification). Br Med J 2(5296):25–26CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49(5):995–1013PubMedPubMedCentralGoogle Scholar
  93. 93.
    Xia F, Bainbridge MN, Tan TY, Wangler MF, Scheuerle AE, Zackai EH, Harr MH, Sutton VR, Nalam RL, Zhu W, Nash M, Ryan MM, Yaplito-Lee J, Hunter JV, Deardorff MA, Penney SJ, Beaudet AL, Plon SE, Boerwinkle EA, Lupski JR, Eng CM, Muzny DM, Yang Y, Gibbs RA (2014) De novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am J Hum Genet 94(5):784–789.  https://doi.org/10.1016/j.ajhg.2014.04.006 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zackai EH, Emanuel BS (1980) Site-specific reciprocal translocation, t(11;22) (q23;q11), in several unrelated families with 3:1 meiotic disjunction. Am J Med Genet 7(4):507–521.  https://doi.org/10.1002/ajmg.1320070412 CrossRefPubMedGoogle Scholar
  95. 95.
    Zepeda-Mendoza CJ, Ibn-Salem J, Kammin T, Harris DJ, Rita D, Gripp KW, MacKenzie JJ, Gropman A, Graham B, Shaheen R, Alkuraya FS, Brasington CK, Spence EJ, Masser-Frye D, Bird LM, Spiegel E, Sparkes RL, Ordulu Z, Talkowski ME, Andrade-Navarro MA, Robinson PN, Morton CC (2017) Computational prediction of position effects of apparently balanced human chromosomal rearrangements. Am J Hum Genet.  https://doi.org/10.1016/j.ajhg.2017.06.011
  96. 96.
    Zhang HG, Wang RX, Li LL, Sun WT, Zhang HY, Liu RZ (2015) Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling. Genet Mol Res 14(4):18792–18798.  https://doi.org/10.4238/2015.December.28.28 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.The Developmental Genome Anatomy ProjectBrigham and Women’s HospitalBostonUSA
  2. 2.Department of Obstetrics, Gynecology and Reproductive BiologyBrigham and Women’s HospitalBostonUSA
  3. 3.Harvard Medical SchoolBostonUSA
  4. 4.Department of PathologyBrigham and Women’s HospitalBostonUSA
  5. 5.Program in Medical and Population GeneticsBroad Institute of Harvard and MITCambridgeUSA
  6. 6.Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK

Personalised recommendations