Conventional and Biotechnological Approaches to Enhance Steviol Glycosides (SGs) in Stevia rebaudiana Bertoni

  • Arpan Modi
  • Nitish Kumar


Stevia rebaudiana Bertoni (Asteraceae) is a perennial herb with many secondary metabolites present mainly in the leaf and other plant parts. Major secondary metabolites, for which the plant is consumed, are steviol glycosides (SGs) containing diterpene steviol, attached to which are one to four molecules of glucose by glycosidic bond(s). They impart very less calorie in consumer’s diet, thus widely used as a sweetener in food and beverage industries. The amount of SGs in the plant varies from 8 to 10%, enhancement of which is always in demand. Both conventional and biotechnological approaches are being made till date to increase the level of SGs in the plant. In the present chapter, we discussed various ways to enhance the level of these sweeteners with the prime focus on conventional and biotechnological approaches.


Micropropagation Physical factors Stevia rebaudiana Steviol glycosides 


  1. Aman, N., Hadi, F., Khalil, S. A., et al. (2013). Efficient regeneration for enhanced steviol glycosides production in Stevia rebaudiana (Bertoni). Comptes Rendus Biologies, 336, 486–492.CrossRefPubMedGoogle Scholar
  2. Bayraktar, M., Naziri, E., Akgun, I. H., et al. (2016). Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell, Tissue and Organ Culture, 127, 289–300.CrossRefGoogle Scholar
  3. Bondarev, N., Reshetnyak, O., & Nosov, A. (2002). Features of development of Stevia rebaudiana shoots cultivated in the roller bottle bioreactor and their production of steviol glycosides. Planta Medica, 68, 759–762.CrossRefPubMedGoogle Scholar
  4. Brandle, J. E., & Telmer, P. G. (2007). Steviol glycosides biosynthesis. Phytochemistry, 68, 1855–1863.CrossRefPubMedGoogle Scholar
  5. Brandle, J. E., Richman, A., Swanson, A. K., et al. (2002). Leaf ESTs from Stevia rebaudiana: A resource for gene discovery in diterpene synthesis. Plant Molecular Biology, 50(4), 612–622.Google Scholar
  6. Ceunen, S., Werbrouck, S., & Geuns, J. M. C. (2012). Stimulation of steviol glycoside accumulation in Stevia rebaudiana by LED light. Journal of Plant Physiology, 169, 749–752.CrossRefPubMedGoogle Scholar
  7. Chen, J., Hou, K., Qin, P., et al. (2014). RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. BMC Genomics, 15, 571–581.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Copetta, A., Lingua, G., & Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16, 485–499.CrossRefPubMedGoogle Scholar
  9. Evans, J. M. (2014). Genetic and environment control of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni. Thesis, Michigan State University.Google Scholar
  10. Fu, X., Yin, Z. P., Chen, J. G., et al. (2015). Production of chlorogenic acid and its derivatives in hairy root cultures of Stevia rebaudiana. Journal of Agricultural and Food Chemistry, 63(1), 262–268.CrossRefPubMedGoogle Scholar
  11. Guleria, P., & Yadav, S. K. (2013). Agrobacterium mediated transient gene silencing (AMTS) in Stevia rebaudiana: Insights into steviol glycoside biosynthesis pathway. PLoS One, 8, e74731. Scholar
  12. Gupta, P., Sharma, S., & Saxena, S. (2010). Callusing in Stevia rebaudiana (Natural Sweetener) for steviol glycoside production. World Academy of Science, Engineering and Technology, 48, 572–576.Google Scholar
  13. Gupta, N., Gudipati, T., Bhaduria, R., et al. (2016). Influence of light, growth regulators, nitrate and sugars on the production of stevioside and rebaudioside a on the leaf callus culture of Stevia rebaudiana Bertoni. International Journal of Applied Biology and Pharmaceutical Technology, 7(2), 205–213.Google Scholar
  14. Hajihashemi, S., & Geuns, J. M. C. (2016). Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio, 6, 937–944.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ilaei, Z. A., Maleki, M., & Omidi, M. (2016). Production of stevioside by hairy root cultures of Stevia rebaudiana Bertoni transformed by Agrobacterium rhizogenes. In Abstract of the 2nd international and 14th Iranian genetics congress, Sh. Beheshti University, Tehran, 21–23 May 2016.Google Scholar
  16. Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research, 3(13), 1222–1239.Google Scholar
  17. Kaur, R., Sharma, N., & Raina, R. (2015). Identification and functional annotation of expressed sequence tags based SSR markers of Stevia rebaudiana. Turkish Journal of Agriculture and Forestry, 39, 439–450.CrossRefGoogle Scholar
  18. Khalil, S. A., Zamir, R., & Ahmad, N. (2014). Effect of different propagation techniques and gamma irradiation on major steviol glycoside’s content in Stevia rebaudiana. The Journal of Animal and Plant Sciences, 24(6), 1743–1751.Google Scholar
  19. Kumar, H., Kaul, K., Gupta, S. B., et al. (2012). A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene, 492, 276–284.CrossRefPubMedGoogle Scholar
  20. Mandal, S., Eveling, H., Giri, B., et al. (2013). Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Applied Soil Ecology, 72, 187–194.CrossRefGoogle Scholar
  21. Mandal, S., Upadhyay, S., Singh, V. P., et al. (2015). Enhanced production of steviol glycosides in mycorrhizal plants: A concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiology and Biochemistry, 89, 100–106.CrossRefPubMedGoogle Scholar
  22. Mandhan, V., Kaur, J., & Singh, K. (2012). smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC Plant Biology, 12, 197–211.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Megeji, N. W., Kumar, J. K., Singh, V., et al. (2005). Introducing Stevia rebaudiana, a natural zero-calorie sweetener. Current Science, 88(5), 801–804.Google Scholar
  24. Michalec-Warczecha, Z., Pistelli, L., D’angiolillo, F., et al. (2016). Establishment of highly efficient Agrobacterium rhizogenes-mediated transformation for Stevia rebaudiana Bertoni explants. Acta Biologica Cracoviensia Series Botanica, 58(1), 113–118.CrossRefGoogle Scholar
  25. Modi, A. R. (2013). Differential expression of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana Bertoni, thesis. Anand Agricultural University.Google Scholar
  26. Modi, A. R., Shukla, Y. M., Litoriya, N. S., et al. (2011). Effect of gibberellic acid foliar spray on growth parameters and stevioside content of ex vitro grown plants of Stevia rebaudiana Bertoni. Medicinal Plants, 3(2), 157–160.Google Scholar
  27. Modi, A., Litoriya, N., Prajapati, V., et al. (2014a). Transcriptional profiling of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana Bertoni during plant hardening. Developmental Dynamics, 243, 1067–1073.CrossRefPubMedGoogle Scholar
  28. Modi, A. R., Raj, S., Kanani, P., et al. (2014b). Analysis of differentially expressed genes involved in stevioside biosynthesis in cultures of Stevia rebaudiana Bertoni treated with steviol as an immediate precursor. Journal of Plant Growth Regulation, 33, 481–488.CrossRefGoogle Scholar
  29. Pal, P. K., Kumar, R., Guleria, V., et al. (2015). Crop-ecology and nutritional variability influence growth and secondary metabolites of Stevia rebaudiana Bertoni. BMC Plant Biology, 15, 67–82.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pandey, M., & Chikara, S. K. (2015). Effect of salinity and drought stress on growth parameters, glycoside content and expression levels of vital genes in steviol glyocosides biosynthesis pathway of Stevia rebaudiana (Bertoni). International Journal of Genetics, 7(1), 153–160.Google Scholar
  31. Pickens, L. B., Tang, T., & Choi, Y. H. (2011). Metabolic engineering for the production of natural products. Annual Review of Chemistry Biomolecular Engineering, 2, 211–236.CrossRefGoogle Scholar
  32. Richman, S. A., Gijzen, M., Starratt, A. N., et al. (1999). Diterpene synthesis in Stevia rebaudiana: Recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. The Plant Journal, 19(4), 411–421.CrossRefPubMedGoogle Scholar
  33. Sreedhar, R. V., Venkatachalam, L., Thimmaraju, R., et al. (2008). Direct organogenesis from leaf explants of Stevia rebaudiana and cultivation in bioreactor. Biologia Plantarum, 52(2), 355–360.CrossRefGoogle Scholar
  34. Striedner, J., Geissler, S., Czygan, F. C., et al. (2004). Contributions to the biotechnological production of sweeteners from Stevia rebaudiana bertoni. III. Accumulation of secondary metabolites by means of a precursor and by elicitation of cell cultures. Acta Biotechnologica, 11(5), 505–509.CrossRefGoogle Scholar
  35. Tadhani, M. B., Patel, V. H., & Subhash, R. (2007). In vitro antioxidant activities of Stevia rebaudiana leaves and callus. Journal of Food Composition and Analysis, 27, 323–329.CrossRefGoogle Scholar
  36. Toussaint, J. P., Smith, F. A., & Smith, S. E. (2007). Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorous nutrition. Mycorrhiza, 17, 291–297.CrossRefGoogle Scholar
  37. Veau, B., Courtois, M., Oudin, A., et al. (2000). Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochimica et Biophysica Acta, 1517, 159–163.CrossRefPubMedGoogle Scholar
  38. Walter, M. A., Hans, J., & Strack, D. (2000). Two distantly related genes encoding 1-deoxy-D-xylulose-5-phosphate synthases: Differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. The Plant Journal, 31(3), 243–253.CrossRefGoogle Scholar
  39. Yadav, A. K., Singh, S., Dhyani, D., et al. (2010). A review on the improvement of stevia [Stevia rebaudiana (Bertoni) ]. Canadian Journal of Plant Science, 91, 1–27.CrossRefGoogle Scholar
  40. Yamazaki, T., & Flores, H. E. (1991). Examination of steviol glycosides production by hairy root and shoot cultures of Stevia rebaudiana. Journal of Natural Products, 54(4), 986–992.CrossRefGoogle Scholar
  41. Yu, X., Yang, J., Wang, E., et al. (2015). Effects of growth stages and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Frontiers in Microbiology, 6, 867–879.PubMedPubMedCentralGoogle Scholar
  42. Yucesan, B., Buyukgocmen, R., Mohammed, A., et al. (2016). An efficient regeneration system and steviol glycoside analysis of Stevia rebaudiana Bertoni, a source of natural high-intensity sweetener. In Vitro Cellular & Developmental Biology Plant, 52, 330–337.CrossRefGoogle Scholar
  43. Zubek, S., Mielcarek, S., & Turnau, K. (2012). Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hepericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 22, 149–156.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Arpan Modi
    • 1
  • Nitish Kumar
    • 2
  1. 1.Institute of Plant SciencesAgricultural Research OrganizationRishon LeZionIsrael
  2. 2.Department of Biotechnology, School of Earth, Biological and Environmental SciencesCentral University of South BiharGayaIndia

Personalised recommendations