Role of Molecular Marker in the Genetic Improvement of the Medicinal and Aromatic Plants

  • Anubha SharmaEmail author
  • Nitish Kumar
  • Iti Gontia Mishra


Several molecular markers have been developed for breeding major crops owing to their significance, ease, and suitability. Out of these DNA markers are frequently used ones; therefore, in this chapter, we describe the DNA markers to map major genes with regard to their principle, applicability, and methods. The two major classes of DNA markers are based on (i) DNA hybridization, e.g., restriction fragment polymorphism, DNA chips, etc.,. and (ii) polymerase chain reaction (PCR), e.g., SSR, RAPD, AFLP, and SNP. Developing trait-linked markers involves the segregation of populations demonstrating target traits followed by reliable phenotyping methods. With the help of these techniques, trait-linked markers may be used in two situations: (i) in the absence of any biological information and (ii) with available information about the trait.


Aromatic plants Medicinal plants Isozyme Breeding Alleles Fingerprinting 



Amplified fragment length polymorphism


Expressed sequence tag


Genotyping by sequencing


Inter-simple sequence repeats


Polymerase chain reaction


Quantitative trait loci


Random amplified polymorphic DNA


Restriction fragment length polymorphism


Single nucleotide polymorphism


Simple sequence repeats


Short tandem repeat


Sequence-tagged sites


Conflict of Interest

It is declared that the authors have no competing interests.


  1. Abd EI-Twab, M. H., & Zahran, F. A. (2010). RAPD, ISSR and RFLP analysis of phylogenetic relationships among congeneric species (Anthemideae, Asteraceae) in Egypt. International Journal of Botany, 6(1), 1–10.CrossRefGoogle Scholar
  2. Avise, J. C. (2004). Molecular markers, natural history, and evolution. Sunderland: Sinnauer Kluwer Academic Publishers.Google Scholar
  3. Azizi, A., Ardalani, H., & Honermeier, B. (2016). Statistical analysis of the associations between phenolic monoterpenes and molecular markers, AFLPs and SAMPLs in the spice plant Oregano. Herba Polonica, 62(2), 42–56.CrossRefGoogle Scholar
  4. Balasubramani, S. P., Murugan, R., Ravikumar, K., & Venkatasubramanian, P. (2010). Development of ITS sequence based molecular marker to distinguish, Tribulus terrestris L. (Zygophyllaceae) from its adulterants. Fitoterapia, 81(6), 503e8.CrossRefGoogle Scholar
  5. Brahmachari, G., Mondal, S., Gangopadhyay, A., Gorai, D., Mukhopadhyay, B., Saha, S., & Brahmachari, A. K. (2004). Swertia (Gentianaceae): Chemical and pharmacological aspects. Chemistry & Biodiversity, 1(11), 1627–1651.Google Scholar
  6. Brown, R. P., Gerbarg, P. L., & Ramazanov, Z. (2002). Rhodiola rosea – A phytomedicinal overview. HerbalGram, 56, 40–52.Google Scholar
  7. Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., & Zhou, S. (2016). Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 16(1), 138e49.CrossRefGoogle Scholar
  8. De Masi, L., Siviero, P., Esposito, C., Castaldo, D., Siano, F., & Laratta, B. (2006). Assessment of agronomic, chemical and genetic variability in common basil (O. basilicum). European Food Research and Technology, 223, 273–281.CrossRefGoogle Scholar
  9. Dhakulkar S, Ganapathi, TR, Bhargava, S, .Bapat VA (2005) Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Science, 169 (5) 812–818.CrossRefGoogle Scholar
  10. Dudley, J. (1993). Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Science, 33(4), 660–668.CrossRefGoogle Scholar
  11. Etminan, A., Omidi, M., Majidi Hervan, E., Naghavi, M. R., Reza zadeh, S., & Pirseyedi, M. (2012). The study of genetic diversity in some Iranian accessions of Hyoscyamus sp. using amplified fragment length polymorphism (AFLP) and retrotransposon/AFLP markers. African Journal of Biotechnology, 11(43), 10070–10078.Google Scholar
  12. Falque, M., & Santoni, S. (2007). Molecular markers and high-throughput genotyping analysis. In J.-F. Morot-Gaudry, P. Lea, & J.-F. Briat (Eds.), Functional plant genomics (p. 50327). Hoboken: Science Publishers.Google Scholar
  13. Ganie, S. H., & Sharma, M. P. (2014). Molecular and chemical profiling of different populations of Evolvulus alsinoides (L.) L. International Journal of Agricultural Research and Crop Sciences, 7, 1322–1331.Google Scholar
  14. Ganie, S. H., Upadhyay, P., Das, S., & Sharma, M. P. (2015). Authentication of medicinal plants by DNA markers. Plant Gene, 4, 83–99.Google Scholar
  15. Ghosh, S., Majumdar, P. B., & Mandi, S. S. (2011). Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae). Genetics and Molecular Research, 10(1), 218–229.CrossRefPubMedGoogle Scholar
  16. Govarthanan, M., Guruchandar, A., Arunapriya, S., Selvankumar, T., & Selvam, K. (2011). Genetic variability among Coleus sp. studied by RAPD banding pattern analysis. International Journal for Biotechnology and Molecular Biology Research, 2(12), 202–208.CrossRefGoogle Scholar
  17. Graham, I. A., Besser, K., Blumer, S., Branigan, C. A., Czechowski, T., et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 327, 328–331.CrossRefPubMedGoogle Scholar
  18. Gupta, D. D., & Mandi, S. S. (2013). Species specific AFLP markers for authentication of Zanthoxylum acanthopodium & Zanthoxylum oxyphyllum. Journal of Medicinal Plants Studies, 1(6), 1–9.Google Scholar
  19. Hammad, I. (2009). Genetic variation among Bougainvillea glabra cultivars (Nyctaginaceae) detected by RAPD markers and isozymes patterns. Research Journal of Agriculture and Biological Sciences, 5(1), 63–71.Google Scholar
  20. Hamrick, J. L., & Godt, M. J. W. (1990). Allozyme diversity in plant species. In B. AHD, M. T. Clegg, A. L. Kahler, & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources (pp. 43–63). Sunderland: Sinauer.Google Scholar
  21. Iqbal, S. H., Ghafoor, A., & Ayub, N. (2005). Relationship between SDSPAGE markers and Ascochyta blight in chickpea. Pakistan Journal of Botany, 37, 87–96.Google Scholar
  22. Javid, A., Ghafoor, A., & Anwar, R. (2004). Seed storage protein electrophoresis in groundnut for evaluating genetic diversity. Pakistan Journal of Botany, 36, 25–29.Google Scholar
  23. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.Google Scholar
  24. Johnson, M. (2012). Studies on intra-specific variation in a multipotent medicinal plant Ocimum sanctum Linn. using isozymes. Asian Pacific Journal of Tropical Biomedicine, 2, S21–S26.CrossRefGoogle Scholar
  25. Jones, N., Ougham, H., Thomas, H., & Pasakinskiene, I. (2009). Markers and mapping revisited: Finding your gene. New Phytologist, 183, 935–966.Google Scholar
  26. Kartle, M., Kurucu, S., & Altun, L. (2003). Quantitative analysis of 1- hyoscyamine in hyoscyamus reticulates L. by GC-MS. Turkish Journal of Chemistry, 27, 565–569.Google Scholar
  27. Kelly, G. S. (2001). Rhodiola rosea: A possible plant adaptogen. Alternative Medicine Review, 6(3), 293–302.PubMedGoogle Scholar
  28. Khan, S., Mirza, K. J., & Abdin, M. Z. (2010). Development of RAPD markersfor authentication of medicinal plant Cuscuta reflexa. Eurasian Journal of Biosciences, 4, 1–7.Google Scholar
  29. Liu, L. F., Liu, T., Li, G. X., Wang, Q., & Ng, T. (2003). Current awareness in phytochemical analysis. Analytical and Bioanalytical Chemistry, 376, 854.CrossRefPubMedGoogle Scholar
  30. Manokar, J., Balasubramani, S. P., & Venkatasubramanian, P. (2017). Nuclear ribosomal DNA e ITS region based molecular marker to distinguish the medicinal plant Gmelina arborea Roxb. Ex Sm. from its substitutes and adulterants. Journal of Ayurveda and Integrative Medicine, 2017, 1–4.Google Scholar
  31. Manzo-Sanchez, G., Buenrostro-Nava, M. T., Guzman-Gonzalez, S., Orozco-Santos, M., Youssef, M., & Escobedo-Gracia, M. R. M. (2015). Genetic diversity in bananas and plantains (Musa spp.).
  32. Martínez, R., Añíbarro, C., & Fernández, S. (2005). Genetic variability among Alexandrium tamarense and Alexandrium minutum strains studied by RAPD banding pattern analysis. Harmful Algae, (5), 599–607.Google Scholar
  33. Martins, A. R., Abreu, A. G., Bajay, M. M., Villela, P. M. S., Batista, C. E. A., Monteiro, M., Alves-Pereira, A., Figueira, G. M., Pinheiro, J. B., Appezzato-da-gloria, B., & Zucchi, M. I. (2013). Development and characterization of microsatellite markers for the medicinal plant Smilax brasiliensis (Smilacaceae) and related species. Applications in Plant Sciences, 1(6), 1200507.CrossRefGoogle Scholar
  34. Masoumi, S. M., Kahrizi, D., Rostami-Ahmadvandi, H., Soorni, J., Kiani, S., Mostafaie, A., & Yari, K. (2012). Genetic diversity study of some medicinal plant accessions belong to Apiaceae family based on seed storage proteins patterns. Molecular Biology Reports, 39(12), 10361–10365.Google Scholar
  35. Misra, A., Shasany, A. K., Shukla, A. K., & Darokar, M. P. (2010). AFLP markers for identification of Swertia species (Gentianaceae). Genetics and Molecular Research, 9, 1535–1544.CrossRefPubMedGoogle Scholar
  36. Mohler, V., & Schwarz, G. (2005). Genotyping tools in plant breeding: From restriction fragment length polymorphisms to single nucleotide polymorphisms. Molecular marker systems in plant breeding and crop improvement. Biotechnology in Agriculture and Forestry, 55, 23–38.CrossRefGoogle Scholar
  37. Muazu, L., Elangomathavan, R., & Ramesh, S. (2016). DNA fingerprinting and molecular marker development for Baliospermum montanum (Wïlld.) Muell. Arg. International Journal of Pharmacognosy and Phytochemical Research 2016, 8(8), 1425–1431.Google Scholar
  38. Palumbi, S. R. (1996). Nucleic acids II: The polymerase chain reaction. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular systematics (2nd ed., pp. 205–247). Sunderland: Sinauer.Google Scholar
  39. Passinho-Soares, H., Felix, D., Kaplan, M. A., Margis-Pinheiro, M., & Margis, R. (2006). Authentication of medicinal plant botanical identity by amplified fragmented length polymorphism dominant DNA marker: Inferences from the Plectranthus genus. Planta Medica, 72, 929–931.CrossRefPubMedGoogle Scholar
  40. Percifield, R. J., Hawkins, J. S., McCoy, J. A., & Widrlechner, M. P. (2007). Genetic diversity in Hypericum and AFLP markers for species-specific identification of H. perforatum L. Planta Medica, 73, 1614–1621.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Qiao, C., Han, Q., Zhao, Z., Wang, Z., Xu, L., & Xu, H. X. (2009). Sequence analysis based on ITS1 region of nuclear ribosomal DNA of Amomum villosum and ten species of Alpinia. Journal of Food and Drug Analysis, 17(2), 142e5.Google Scholar
  42. Rai, P. S., Bellampalli, R., Dobriyal, R. M., Agarwal, A., Satyamoorthy, K., & Narayana, D. A. (2012). DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region. Journal of Ayurveda and Integrative Medicine, 3(3), 136e40.Google Scholar
  43. Reiter, R. (2001). PCR-based marker systems. In R. L. Phillip & I. K. Vasil (Eds.), DNA-based markers in plants (pp. 9–29). Dordrecht: Kluwer.CrossRefGoogle Scholar
  44. Rogstad, S. H. (1993). Surveying plant genomes for variable number of tandem repeat loci. Methods in Enzymology, 224, 278–294.CrossRefPubMedGoogle Scholar
  45. Satovic, Z., Liber, Z., Karlovic, K., & Kolak, I. (2002). Genetic relatedness among basil (Ocimum spp.) accessions using RAPD markers. Acta Biologica Cracoviensia Series Botanica, 44, 155–160.Google Scholar
  46. Saunders, J. A., Pedroni, M. J., Penrose, L., & Fist, A. J. (2001). AFLP DNA analysis of opium poppy. Crop Science, 41, 1596–1601.CrossRefGoogle Scholar
  47. Selvaraj, D., Shanmughanandhan, D., Sarma, R. K., Joseph, J. C., Srinivasan, R. V., & Ramalingam, S. (2012). DNA barcode ITS effectively distinguishes the medicinal plant Boerhavia diffusa from its adulterants. Genomics, Proteomics & Bioinformatics, 10(6), 364e7.CrossRefGoogle Scholar
  48. Singh, A. P., Dwivedi, S., Bharti, S., Srivastava, A., Singh, V., & Khanuja, S. P. S. (2004). Phylogenetic relationships as in Ocimum revealed by RAPD markers. Euphytica, 136, 11–20.CrossRefGoogle Scholar
  49. Suzuki, Y., Sekiya, T., & Hayashi, K. (1991). Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Analytical Biochemistry, 192(1), 82–84.Google Scholar
  50. Tanksley, S., Young, N. D., Paterson, A. H., & Bonierbale, M. W. (1989). RFLP mapping in plant breeding: New tools for an old science. Nature Biotechnology, 7, 257–264.Google Scholar
  51. Tiwari, V. K., Heesacker, A., Riera-Lizarazu, O., Gunn, H., Wang, S., Yi, W., Young, Q. G., Paux, E., Koo, D.-H., Kumar, A., Luo, M.-C., Lazo, G., Zemetra, R., Akhunov, E., Friebe, B., Poland, J., Gill, B. S., Kianian, S., & Leonard, J. M. (2016). A whole-genome, radiation hybrid mapping resource of hexaploid wheat. The Plant Journal, 86(2), 195–207.Google Scholar
  52. Veress A., Lendvay B., Pedryc A., and György Z., (2015) Development of microsatellite markers for Rhodiola rosea 21 (1–2): 37–42. Agroinform Publishing House, BudapestGoogle Scholar
  53. Vieira, R. F., Goldsbrough, P., & Simon, J. E. (2003). Genetic diversity of basil (Ocimum spp.) based on RAPD markers. Journal of the American Society for Horticultural Science, 128(1), 94–99.Google Scholar
  54. Vos, P., Hogers, R., Bleeker, M., Reijan, S. M., Reijans, M., Lee, T., Hornes, M., Fnjters, A., Pot, J., Peleman, J., Kuiper, M., & Zabean, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wang, C. Z., Li, P., Ding, J. Y., Peng, X., & Yuan, C. S. (2007). Simultaneous identification of Bulbus Fritillariae cirrhosae using PCR-RFLP analysis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(9), 628–632.CrossRefGoogle Scholar
  56. Winter, P., & Kahl, G. (1995). Molecular marker technologies for plant improvement. World Journal of Microbiology and Biotechnology, 11(4), 438–448.CrossRefPubMedGoogle Scholar
  57. Yang, H., Jian, J., Li, X., Renshaw, D., Clements, J., Sweetingham, M. W., Tan, C., & Li, C. (2015). Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius). BMC Genomics, 16(1), 660.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Anubha Sharma
    • 1
    Email author
  • Nitish Kumar
    • 2
  • Iti Gontia Mishra
    • 3
  1. 1.Amity Institute of Biotechnology, Amity UniversityNoidaIndia
  2. 2.Department of Biotechnology, School of Earth, Biological and Environmental SciencesCentral University of South BiharGayaIndia
  3. 3.Biotechnology CentreJawaharlal Nehru Agricultural UniversityJabalpurIndia

Personalised recommendations