Advertisement

In Vitro Conservation Strategies for Gloriosa superba L.: An Endangered Medicinal Plant

  • Ritu Mahajan
  • Pallavi Billowaria
  • Nisha Kapoor
Chapter

Abstract

The immense value of plants remains in their incredible potential, a bit of which has been discovered till now and ample still remains to be discovered. The capacity of plants to produce a diverse array of unique chemical compounds attracts the attention of researchers and pharma industry towards the advantage of procuring these biological compounds as medicines for human health. Gloriosa superba L., the plant of enormous medicinal importance, has been listed among the endangered plants a few decades back. The plant is exploited for the colchicine which adds a characteristic feature to the medicinal value of this seasonal herb. Biotechnological approaches involve several efficient and cost-effective techniques which further resulted in the manipulation of this endangered plant to enhance its yield. Even the use of callus culture, cell suspension and hairy roots recommends coherent and productive formula for conservation and production of colchicine so as to fulfil the increasing demands of the pharma industry. The chapter reviews the in vitro propagation and conservation efforts made by several workers to increase and maintain the germplasm and isolation of colchicine from in vitro grown cultures.

Keywords

Gloriosa superba Micropropagation Endangered Conservation Secondary metabolites 

References

  1. Ade, R., & Rai, M. K. (2012). Multiple shoot formation in Gloriosa superba: A rare and endangered Indian medicinal plant. Proceeding of the Society for Indonesian Biodiversity, 1, 250–254.Google Scholar
  2. Anandhi, S., & Rajamani, K. (2012). Studies on seed germination and growth in Gloriosa superba L. Global Journal of Research on Medicinal Plants and Indigenous Medicine, 1, 524–528.Google Scholar
  3. Anandhi, S., Rajamani, K., & Jawaharlal, M. (2013). Propagation studies on Gloriosa superba. Medicinal and Aromatic Plant Research Journal, 1, 1–4.Google Scholar
  4. Anandhi, S., & Rajamani, K. (2017). Mutagenesis via exposure to physical and chemical mutagens in microtubers of glory lily. International Journal of Environmental Science and Technology, 6, 141–150.Google Scholar
  5. Anandhi, S., Rajamani, K., & Jawaharlal, M. (2016). Propagation studies in Gloriosa superba. African Journal of Agricultural Research, 4, 217–220.Google Scholar
  6. Arumugam, A., & Gopinath, K. (2012). In vitro micropropagation using corm bud explants: An endangered medicinal plant of Gloriosa superba L. Asian Journal of Biotechnology, 4, 120–128.Google Scholar
  7. Chatterjee, T., & Ghosh, B. (2015). An efficient method of in vitro propagation of Gloriosa superba L. – An endangered medicinal plant. Journal of Plant Research, 37, 18–23.Google Scholar
  8. Chen, S. L., Yu, H., Luo, H. M., Wu, Q., Li, C. F., & Steinmetz, A. (2016). Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chinese Medicine, 11, 37.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chitra, R., & Rajamani, K. (2009). Per se performance and correlation for yield and its quality characters in glory lily (Gloriosa superba L.). Academic Journal of Plant Sciences, 2, 39–43.Google Scholar
  10. Cruz-Cruz, C. A., González-Arnao, M. T., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2, 73–95.CrossRefGoogle Scholar
  11. Custers, J. B. M., & Bergervoet, J. H. W. (1994). Micropropagation of Gloriosa: Towards a practical protocol. Scientia Horticulturae, 57, 323–334.CrossRefGoogle Scholar
  12. Ekor, M. (2013). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, 177.Google Scholar
  13. Finnie, J. F., & Staden, J. V. (1989). In vitro propagation of Sandersonia and Gloriosa. Plant Cell, Tissue and Organ Culture, 19, 151–158.Google Scholar
  14. Ghosh, B., Mukherjee, S., Jha, T. B., & Jha, S. (2002). Enhanced colchicine production in root cultures of Gloriosa superba by direct and indirect precursors of the biosynthetic pathway. Biotechnology Letters, 24, 231–234.CrossRefGoogle Scholar
  15. Ghosh, S., Ghosh, B., & Jha, S. (2006). Aluminium chloride enhances colchicine production in root cultures of Gloriosa superba. Biotechnology Letters, 28, 497–503.Google Scholar
  16. Ghosh, S., Ghosh, B., & Jha, S. (2007). In vitro tuberization of Gloriosa superba L. on basal medium. Scientia Horticulturae, 114, 20–223.Google Scholar
  17. Giri, C. C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in Gloriosa superba. Indian Journal of Experimental Biology, 3, 719–720.Google Scholar
  18. Gopinath, K., Gowri, S., Karthika, V., & Arumugam, A. (2014). Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure in Chemistry, 4, 115.CrossRefGoogle Scholar
  19. Hannapel, D. J., Sharma, P., Lin, T., & Banerjee, A. K. (2017). The multiple signals that control tuber formation. Plant Physiology, 174, 845–856.Google Scholar
  20. Hassan, S. A., & Roy, S. K. (2005). Micropropagation of Gloriosa superba L. through high frequency shoot proliferation. Plant Tissue Culture, 1(15), 67–74.Google Scholar
  21. Hayashi, T., Yoshida, K., & San, K. (1988). Formation of alkaloids in suspension-cultured Colchicum autumnale. Phytochemistry, 27, 1371–1374.CrossRefGoogle Scholar
  22. Jadhav, S. Y., & Hegde, B. A. (2001). Somatic embryogenesis and plant regeneration in Gloriosa L. Indian Journal of Experimental Biology, 39, 943–946.PubMedGoogle Scholar
  23. Khan, H., Khan, M. A., & Hussain, I. (2007). Enzyme inhibition activities of the extracts from rhizomes of Gloriosa superba Linn (Colchicaceae). Journal of Enzyme Inhibition and Medicinal Chemistry, 22, 722–725.CrossRefPubMedGoogle Scholar
  24. Khandel, A. K., Khan, S., Ganguly, S., & Bajaj, A. (2011). In vitro shoot initiation from apical shoot buds & meristems of Gloriosa superba L. – An endangered medicinal herb of high commercial value. Research, 3, 36–45.Google Scholar
  25. Kolar, A. B., & Basha, M. G. (2014). In vitro tuberization and quantitative analysis of colchicine using HPTLC in Gloriosa superba L an endangered medicinal plant of Pachamalai hills, a part of eastern Ghats, Tamil Nadu. International Journal of Pharma and Bio Sciences, 5, 300–310.Google Scholar
  26. Krause, J. (1986). Production of Gloriosa tubers from seeds. Acta Horticulturae (ISHS), 177, 353–360.CrossRefGoogle Scholar
  27. Kumar, C. N., Jadhav, S. K., Tiwari, K. L., & Afaque, Q. (2015). In vitro Tuberization and colchicine content analysis of Gloriosa superba L. Biotechnology, 14, 142–147.CrossRefGoogle Scholar
  28. Lata, H., Chandra, S., Techen, N., Khan, I. A., & Elsohly, M. A. (2011). Molecular analysis of genetic fidelity in Cannabis sativa L. plants grown from synthetic (encapsulated) seeds following in vitro storage. Biotechnology Letters, 33, 2503–2508.CrossRefPubMedGoogle Scholar
  29. Leela, A., & Agastian, P. (2013). Agrobacterium rhizogenes mediated hairy root induction for increased Colchicine content in Gloriosa superba L. Journal of Academics and Industrial Research, 2, 68–73.Google Scholar
  30. Madhavan, M., & Joseph, J. P. (2008). Direct somatic embryogenesis in Gloriosa superba L. an endangered medicinal plant of India. Plant Cell Biotechnology and Molecular Biology, 9, 2.Google Scholar
  31. Mahajan, R. (2015). Gloriosa superba L.: An endangered medicinal plant. Hort Flora Research Spectrum, 4, 168–171.Google Scholar
  32. Mahajan, R., Kapoor, N., & Billowria, P. (2016). Callus proliferation and in vitro organogenesis of Gloriosa superba: An endangered medicinal plant. Annals of Plant Sciences, 5, 1466–1471.Google Scholar
  33. Mergeay, J., & Santamaria, L. (2012). Evolution and biodiversity: The evolutionary basis of biodiversity and its potential for adaptation to global change. Evolutionary Applications, 5, 103–106.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Muruganandam, C., & Mohideen, M. K. (2007). Effect of tuber size on growth, flowering and yield of glory lily (Gloriosa superba L.) India. Plant Archives, 7, 187–189.Google Scholar
  35. Naik, P. M., & Al-Khayri, J. (2016). Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In A. K. Shanker & C. Shanker (Eds.), Abiotic and biotic stress in plants – Recent advances and future perspectives (pp. 247–277). London: INTECH.Google Scholar
  36. Nikhila, G. S., Sangeetha, G., Nair, A. G., Pradeesh, S., & Swapna, T. S. (2014). High frequency embryogenesis and organogenesis in Gloriosa superba L. A plant in need of conservation. Journal of Aquatic Biology and Fisheries, 2, 398–402.Google Scholar
  37. Nikhila, G. S., Sangeetha, G., Nair, A. G., Pradeesh, S., & Swapna, T. S. (2014). High frequency embryogenesis and organogenesis in Gloriosa superba L.– a plant in need of conservation. Journal of Aquatic Biology and Fisheries, 2, 398–402.Google Scholar
  38. Nikhila, G. S., Sangeetha, G., & Swapna, T. S. (2015). Anti inflammatory properties of the root tubers of Gloriosa superba and its conservation through micropropagation. Journal of Medicinal Plant Research, 9, 1–7.CrossRefGoogle Scholar
  39. Ozdemir, R., Bayrakci, B., & Teksam, O. (2011). Fatal poisoning in children: Acute colchicine intoxication and new treatment approaches. Clinical Toxicology (Philadelphia, PA), 49, 739–743.CrossRefGoogle Scholar
  40. Pan, S. Y., Litscher, G., Gao, S. H., et al. (2014). Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evidence-based Complementary and Alternative Medicine, 2014, 525340.PubMedPubMedCentralGoogle Scholar
  41. Pandurangan, B., & Philomina, D. (2010). Effect of nutritional factors and precursors on formation of colchicine in Gloriosa superba in vitro. Research in Biotechnology, 1, 29–37.Google Scholar
  42. Piombino, A. (2016). The heavy links between geological events and vascular plants evolution: A brief outline. International Journal of Evolutionary Biology, 2016, 9264357.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rishi, A. (2011). In vitro callus induction and regeneration of healthy plants of Gloriosa superba Linn. Indian Journal of Fundamental and Applied Life Science, 1, 64–65.Google Scholar
  44. Samarajeewa, P. K., Dassanayake, M. D., & Jayawardena, S. D. (1993). Clonal propagation of in vitrousing plant cell, tissue and organ cultures: Recent trends and a sky eye view appraisal. Plant Cell, Tissue and Organ Culture, 126, 1–18.Google Scholar
  45. Shimasaki, K., Sakuma, K., & Nishimura, Y. (2009). Tuber formation of Gloriosa superba using stem sections of branches under cultivation. Acta Horticulturae, 812, 245–250.CrossRefGoogle Scholar
  46. Singh, D., Mishra, M., & Yadav, A. S. (2015a). Study the effect of growth regulators on micropropagation of Gloriosa superba L. from seeds and their acclimatization. Annual Research & Review in Biology, 7, 84–90.CrossRefGoogle Scholar
  47. Singh G, Srivastava M, Misr P (2015b) Genetic transformation for quality improvement in ornamental climbers. In: Biotechnological strategies for the conservation of medicinal and ornamental climbers, Shahzad, Anwar, Sharma, Shiwali, Siddiqui, Saeed A, Springer, Cham pp. 351–365.Google Scholar
  48. Sivakumar, G., & Krishnamurthy, K. V. (2000). Micropropagation of Gloriosa superba L. – An endangered species of Asia and Africa. Current Science, 78, 30–32.Google Scholar
  49. Sivakumar, G., Krishnamurthi, K. V., & Rajendran, T. D. (2003). In vitro corm production in Gloriosa superba L., an ayurvedic medicinal plant. The Journal of Horticultural Science and Biotechnology, 78, 450–453.Google Scholar
  50. Sivakumar, G., Krishnamurthy, K.V., Hahn, E.J., & Paek, K.Y. (2004). Enchanced in vitro production of colchicine in Gloriosa superba L. an emerging industrial medicinal crop in South India. Journal of Horticultural Science and Technology, 79, 602–605.Google Scholar
  51. Somani, V. J., John, C. K., & Thengane, R. J. (1989). In vitro propagation and corm formation in Gloriosa superba. Indian Journal of Experimental Biology, 27, 578–579.Google Scholar
  52. Venkatachalam, P., Ezhili, N., & Thiyagarajan, M. (2012). In vitro Shoot Multiplication of Gloriosa superba L. – An Important Anticancer Medicinal Herb. In International Conference on Biotechnology, Biological and Biosystems Engineering (ICBBBE’ 2012), Phuket (Thailand).Google Scholar
  53. Wable, A. S., & Kharde, M. N. (2009). Gloriosa superba L., an important medicinal plant. International Journal of Plant Sciences, 4, 438–439.Google Scholar
  54. Yadav, K., Aggarwal, A., & Singh, N. (2012). Actions for ex situ conservation of Gloriosa superba L. – An endangered ornamental cum medicinal plant. Journal of Crop Science and Biotechnology, 15, 297–303.CrossRefGoogle Scholar
  55. Yadav, K., Aggarwal, A., & Singh, N. (2013). Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Industrial Crops and Products, 45, 88–93.CrossRefGoogle Scholar
  56. Yoshida, K., Takahisa Hayashi, T., & Sano, K. (1988). Colchicoside in Colchicum autumnale Bulbs. Agricultural and Biological Chemistry, 52, 593–594.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ritu Mahajan
    • 1
  • Pallavi Billowaria
    • 1
  • Nisha Kapoor
    • 1
  1. 1.School of BiotechnologyUniversity of JammuJammuIndia

Personalised recommendations