Advertisement

Tissue Culture in Mulberry (Morus spp.) Intending Genetic Improvement, Micropropagation and Secondary Metabolite Production: A Review on Current Status and Future Prospects

  • Tanmoy Sarkar
  • Thallapally Mogili
  • S. Gandhi Doss
  • Vankadara Sivaprasad
Chapter

Abstract

Mulberry (Morus spp.) is a woody, perennial, highly heterozygous, fast-growing plant and grown mainly for its foliage worldwide under various agroclimatic zones (tropical, subtropical and temperate) of Asia, Africa and the Americas. Mulberry leaves are the sole food source for monophagous and domesticated mulberry silkworm, Bombyx mori L. Moreover, mulberry fruits are fleshy, succulent and delicious berries. The fruits are low in calories and contain health-promoting phytonutrients such as polyphenols, minerals and vitamins having medicinal importance for its antioxidant, antitumor, neuroprotective activities and hypo-lipidemic/macrophage activating effects. Genetic improvement of mulberry is mainly aimed for improving productivity and quality of leaf for silk production. Conventional plant breeding techniques including tissue culture and molecular biology methods are employed in mulberry genetic improvement programmes to develop varieties for improved leaf productivity and biotic/abiotic stress tolerance. This review focuses on various tissue culture approaches such as in vitro regeneration, micropropagation, genetic transformation, somaclonal variation, in vitro selection, suspension culture, and much more which often supplement the traditional breeding methods. Further, characterization and production of secondary metabolites from mulberry tissues through suspension culture which are becoming a blooming option for commercial exploration of bioactive compounds have been discussed.

Keywords

Organogenesis Somatic embryogenesis Somaclonal variation Double haploid Somatic hybrid Transgenic mulberry Secondary metabolite 

References

  1. Agarwal, S. (2002). Genetic transformation and plant regeneration studies in Morus alba L. Doctoral thesis. Dr. Y. S. Parmar University of Horticulture and Forestry, Solan, India.Google Scholar
  2. Agarwal, S., Kanwar, K., & Sharma, D. R. (2004). Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Scientia Horticulturae, 102, 359–368.CrossRefGoogle Scholar
  3. Ahmad, P., Sharma, S., & Srivastava, P. S. (2007). In vitro selection of NaHCO3 tolerant cultivars of Morus alba (local and Sujanpuri) in response to morphological and biochemical parameters. Horticultural Science (Prague), 34(3), 114–122.CrossRefGoogle Scholar
  4. Akram, M., & Aftab, F. (2012). Efficient micropropagation and rooting of king white mulberry (Morus macroura Miq.) var. laevigata from nodal explants of mature tree. Pakistan Journal of Botany, 44, 285–289.Google Scholar
  5. Bhatnagar, S., & Khurana, P. (2003). Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K-2: A time phased screening strategy. Plant Cell Reports, 21(7), 669–675.PubMedGoogle Scholar
  6. Bhatnagar, S., Kapur, A., & Khurana, P. (2001). TDZ mediated differentiation in commercially valuable Indian mulberry, Morus indica cultivars K2 and DD. Plant Biotechnology, 18, 61–65.CrossRefGoogle Scholar
  7. Bhatnagar, S., Kapur, A., & Khurana, P. (2002). Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry. Indian Journal of Experimental Biology, 40, 1387–1393.PubMedGoogle Scholar
  8. Bhau, B. S., & Wakhlu, A. K. (2001). Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell, Tissue and Organ Culture, 66, 25–29.CrossRefGoogle Scholar
  9. Bhau, B. S., & Wakhlu, A. K. (2003). Rapid micropropagation of five cultivars of mulberry. Biologia Plantarum, 46, 349–355.CrossRefGoogle Scholar
  10. Bhojwani, S. S., & Razdan, M. K. (1996). Plant tissue culture: theory and practice. A revised edition. Amsterdam: Elsevier.Google Scholar
  11. Chakraborti, S. P., Vijayan, K., Roy, B. N., & Quadri, S. M. H. (1998). In vitro induction in tetraploidy in mulberry (Morus alba L). Plant Cell Reports, 17, 794–803.CrossRefGoogle Scholar
  12. Chattopadhyay, S., Doss, S. G., Halder, S., Ali, A. K., & Bajpai, A. K. (2011). Comparative micropropagation efficiency of diploid and triploid mulberry (Morus alba cv. S1) from axillary bud explants. African Journal of Biotechnology, 10(79), 18153–18159.CrossRefGoogle Scholar
  13. Checker, V. G., Chibbar, A. K., & Khurana, P. (2012). Stress-inducible expression of barley hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Research, 21(5), 939–957.CrossRefPubMedGoogle Scholar
  14. Chitra, D. S. V., & Padmaja, G. (2005). Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Scientia Horticulturae, 106, 593–602.Google Scholar
  15. Chitra, D. S. V., Chinthapalli, B., & Padmaja, G. (2014). Efficient regeneration system for genetic transformation of mulberry (Morus indica L. cultivar S-36) using in vitro derived shoot meristems. American Journal of Plant Sciences, 5, 1–6.Google Scholar
  16. Choudhary, R., Chaudhury, R., & Malik, S. K. (2015). Development of an efficient regeneration and rapid clonal multiplication protocol for three different Morus species using dormant buds as explants. The Journal of Horticultural Science and Biotechnology, 90(3), 245–253.CrossRefGoogle Scholar
  17. Cocking, E. C. (1960). A method for the isolation of plant protoplasts and vacuoles. Nature, 187, 927–929.CrossRefGoogle Scholar
  18. Das, B. C., Prasad, D. N., & Sikdar, A. K. (1970). Colchicine induced tetraploids of mulberry. Caryologia, 23, 283–293.CrossRefGoogle Scholar
  19. Das, M., Chauhan, H., Chibbar, A., Haq, Q. M. R., & Khurana, P. (2011). High efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K-2, by constitutive and inducible expression of tobacco Osmotin. Transgenic Research, 20(2), 231–246.CrossRefPubMedGoogle Scholar
  20. Datta, R. K. (2000). Mulberry cultivation and utilization in India. In FAO electronic conference on mulberry for animal production (Morus L.). Available via http://www.fao.org/DOCREP/005/X9895E/x9895e04.htm#TopOfPage. Accessed 10 Jan 2018.
  21. Dhanyalakshmi, K. H., Naika, M. B. N., Sajeevan, R. S., Mathew, O. K., Shafi, K. M., Sowdhamini, R., & Nataraja, K. N. (2016). An approach to function annotation for proteins of unknown function (PUFs) in the transcriptome of Indian mulberry. PLoS One, 11(3), e0151323.  https://doi.org/10.1371/journal.pone.0151323.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Doss, S. G., Vijayan, K., Chakraborti, S. P., & Roy, B. N. (1998). Studies on flowering time and its relation with geographic origin in mulberry. Indian Journal of Forestry, 24(2), 203–205.Google Scholar
  23. Dunwell, J. M. (2010). Haploids in flowering plants: Origins and exploitation. Plant Biotechnology Journal, 8, 377–424.CrossRefPubMedGoogle Scholar
  24. Dwivedi, N. K., Suryanarayana, N., Sikdar, A. K., Susheelamma, B. N., & Jolly, M. S. (1989). Cytomorphological studies in triploid mulberry evolved by diploidization of female gamete cells. Cytologia, 54, 13–19.CrossRefGoogle Scholar
  25. El-Mawla, A. A. M. A., Mohamed, K. M., & Mostafa, A. M. (2011). Induction of biologically active flavonoids in cell cultures of Morus nigra and testing their hypoglycemic efficacy. Scientia Pharmaceutica, 79(4), 951–961.CrossRefGoogle Scholar
  26. Enomoto, S. (1987). Preservation of genetic resource of mulberry by means of tissue culture. Japanese Agriculture Research Quarterly, 21, 205–210.Google Scholar
  27. George, E. F. (2008). Plant tissue culture procedure- background. In E. F. George, M. A. Hall, & G. J. De Klerk (Eds.), Plant propagation by tissue culture (pp. 1–28). Dordrecht: Springer.Google Scholar
  28. Germaná, M. A. (2011). Anther culture for haploid and doubled haploid production. Plant Cell, Tissue and Organ Culture, 104, 283–300.CrossRefGoogle Scholar
  29. Gogoi, G., Borua, P. K., & Al-Khayri, J. M. (2017). Improved micropropagation and in vitro fruiting of Morus indica L. (K-2 cultivar). Journal, Genetic Engineering & Biotechnology, 15, 249–256.CrossRefGoogle Scholar
  30. Hoshino, Y., Miyashita, T., & Thomas, T. D. (2011). In vitro culture of endosperm and its application in plant breeding: Approaches to polyploidy breeding. Scientia Horticulturae, 130(1), 1–8.CrossRefGoogle Scholar
  31. Inyai, C., Udomsin, O., Komaikul, J., Tanaka, H., Sritularak, B., & Putalun, W. (2015, January 27–30). Enhancement mulberroside A production in Morus alba L. cell cultures by calcium alginate immobilization and elicitation. Paper presented at the International conference on herbal and traditional medicine (HTM-2015), Pullman Raja Orchid, Khonkaen, Thailand.Google Scholar
  32. Jain, A. K., & Datta, R. K. (1992). Shoot organogenesis and plant regeneration in mulberry (Morus bombycis Koidz): Factors influencing morphogenetic potential in callus cultures. Plant Cell, Tissue and Organ Culture, 29, 43–50.CrossRefGoogle Scholar
  33. Jianzhong, T., Chengfu, L., Hongli, W., & Mingqi, C. (2001). Transgenic plants via transformation of glycinin gene to mulberry. Journal of Agricultural Biotechnology, 9(4), 400–402.Google Scholar
  34. Johnson, A. A. T., & Veilleuz, R. E. (2010). Somatic hybridization and applications in plant breeding. In J. Janick (Ed.), Plant breeding reviews (Vol. 20, pp. 167–225). Oxford: Wiley.Google Scholar
  35. Kamareddi, S., Patil, V. C., & Nadaf, S. A. (2013). Development of synthetic seeds in mulberry (Morus indica L.) cv. M-5 and evaluation under controlled conditions. Research Journal of Agricultural Science, 4, 221–223.Google Scholar
  36. Katagiri, K. (1989a). Callus induction in culture of mulberry pollen. Journal of Sericulture Science of Japan, 58, 527–529.Google Scholar
  37. Katagiri, K. (1989b). Colony formation in culture of mulberry mesophyll protoplasts. Journal of Sericulture Science of Japan, 58, 267–268.Google Scholar
  38. Katagiri, K., & Modala, V. (1991). Effect of sugar and sugar alcohols on the division of mulberry pollen in tissue culture. Journal of Sericulture Science of Japan, 60, 514–516.Google Scholar
  39. Katagiri, K., & Modala, V. (1993). Induction of calli and organlike structures in isolated pollen culture of mulberry, Morus australis POIRET. Journal of Sericulture Science of Japan, 62, 1–6.Google Scholar
  40. Katagiri, K., Nakajima, K., & Yokoyama, T. (1982). The triploidy in mulberry varieties from Thailand. Journal of Sericulture Science of Japan, 51, 539–540.Google Scholar
  41. Kavyashree, R. (2007). A repeatable protocol for in vitro micropropagation of mulberry variety S54. Indian Journal of Biotechnology, 6, 385–388.Google Scholar
  42. Khurana, P., & Checker, V. G. (2011). The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Reports, 30, 825–838.CrossRefPubMedGoogle Scholar
  43. Kim, H. R., Patel, K. R., & Thorpe, T. A. (1985). Regeneration of mulberry plantlets through tissue culture. Botanical Gazette, 46(3), 335–340.CrossRefGoogle Scholar
  44. Kim, J. W., Kim, S. U., Lee, H. S., Kim, I., Ahn, M. Y., & Ryu, K. S. (2003). Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatation with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance chromatography. Journal of Chromatography. A, 1002, 93–99.CrossRefPubMedGoogle Scholar
  45. Kumar, V., Parvatam, G., & Ravishankar, G. A. (2009). AgNO3: A potential regulator of ethylene activity and plant growth modulator. Electronic Journal of Biotechnology, 12(2), 8–9.CrossRefGoogle Scholar
  46. Lakshmi Sita, G., & Ravindran, S. (1991). Gynogenic plants from ovary cultures of mulberry (Morus indica). In J. Prakash & K. L. M. Pierik (Eds.), Horticulture new techniques and applications (pp. 225–229). London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  47. Lal, S., Gulyani, V., & Khurana, P. (2008). Over expression of hva1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Research, 17, 651–663.CrossRefPubMedGoogle Scholar
  48. Lalitha, N., Kih, S., Banerjee, R., Chattopadhya, S., Saha, A. K., & Bindroo, B. B. (2013). High frequency multiple shoot induction and in vitro regeneration of mulberry (Morus indica L. cv. S-1635). International Journal of Advanced Research, 1, 22–26.Google Scholar
  49. Lee, Y., Lee, D.-E., Lee, H. S., Kim, S.-K., Lee, W. S., Kim, S.-H., & Kim, M.-W. (2011). Influence of auxins, cytokinins, and nitrogen on production of rutin from callus and adventitious roots of the white mulberry tree (Morus alba L.). Plant Cell, Tissue and Organ Culture, 105(1), 9–19.CrossRefGoogle Scholar
  50. Lu, M.-C. (2002). Micropropagation of Morus latifolia Poilet using axillary buds from mature trees. Scientia Horticulturae, 96, 329–341.CrossRefGoogle Scholar
  51. Machii, M. (1990). Leaf disc transformation of mulberry plant (Morus alba L.) by Agrobacterium Ti plasmid. Journal of Sericulture Science of Japan, 59, 105–110.Google Scholar
  52. Machii, M., Sung, G. B., Yamanuchi, H., & Koyama, A. (1996). Transient expression of GUS gene introduced into mulberry plant by particle bombardment. Journal of Sericulture Science of Japan, 65, 503–506.Google Scholar
  53. Mallick, P., Ghosh, S., Chattaraj, S., & Sikdar, S. R. (2016). Isolation of mesophyll protoplast from Indian mulberry (Morus alba L) cv. S 1635. Journal of environmental Sociobiology, 13(2), 217–222.Google Scholar
  54. Mamrutha, H. M., Mogili, T., Lakshmi, K. J., Rama, N., Kosma, D., Udaya Kumar, M., Jenks, M. A., Karaba, N., & Nataraja, K. N. (2010). Leaf cuticular wax amount and crystal morphology regulate post-harvest water loss in mulberry (Morus species). Plant Physiology and Biochemistry, 48, 690–696.CrossRefPubMedGoogle Scholar
  55. Mishra, S. (2014). Genetic analysis of traits controlling water use efficiency and rooting in mulberry (Morus spp.) by molecular markers. PhD thesis, University of Mysore, Mysuru, India.Google Scholar
  56. Naik, V. G., Thumilan, B., Sarkar, A., Dandin, S. B., Pinto, M. V., & Sivaprasad, V. (2014). Development of genetic linkage map of mulberry using molecular markers and identification of QTLs linked to yield and yield contributing traits. Sericologia, 54(4), 221–229.Google Scholar
  57. Narasimhan, R., Dhruva, B., Paranjpe, S. V., Kulkarni, D. D., & Mascarenhas, A. F. (1970). Tissue culture of some woody species. Proceedings of the Indian Academy of Sciences B, 71(5), 204–212.Google Scholar
  58. Narayan, P., Chakraborty, S. P., & Rao, G. S. (1989). Regeneration of plantlets from the callus of stem segments of mature plants of Morus alba L. Proceedings of the Indian National Science Academy B, 55, 469–472.Google Scholar
  59. Narayan, P., Chakroborti, S. P., Roy, B. N., & Sinha, S. S. (1993, March 4–5). In vitro regeneration of plant from internodal callus of Morus alba L. and isolation of genetic variant. In: Abstracts of Seminar on Plant Cytogenetics in India, University of Calcutta, Kolkata, India, pp. 188–192.Google Scholar
  60. Niino, T. (1995). Cryopreservation of germplasm of mulberry (Morus spp.). In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry (Vol. 32, pp. 102–113). Berlin: Springer.Google Scholar
  61. Ohnishi, T., & Kiyama, S. (1987). Effects of change in temperature, pH, Ca ion concentration in the solution used for protoplast fusion on the improvement of the fusion ability of mulberry protoplasts. Journal of Sericulture Science of Japan, 56, 418–421.Google Scholar
  62. Ohnishi, T., & Tanabe, K. (1989). On the protoplast fusion of mulberry and paper mulberry by electrofusion method. Journal of Sericulture Science of Japan, 58, 353–354.Google Scholar
  63. Ohyama, K. (1970). Tissue culture in mulberry tree. Japan Agricultural Research Quarterly, 5, 30–34.Google Scholar
  64. Oka, S., & Tewary, P. K. (2000). Induction of hairy roots from hypocotyls of mulberry (Morus indica L.) by Japanese wild strains of Agrobacterium rhizogenes. Journal of Sericulture Science of Japan, 69, 13–19.Google Scholar
  65. Pattnaik, S. K., & Chand, P. K. (1997). Rapid clonal propagation of three mulberries, Morus cathyana Hemsl., M. lhou Koiz. And M. serrata Roxb. Through in vitro culture of apical shoot buds and nodal explants from mature trees. Plant Cell Reports, 16, 503–508.Google Scholar
  66. Pattnaik, S. K., Sahoo, Y., & Chand, P. K. (1995). Efficient plant retrieval from alginate encapsulated vegetative buds of mature Mulberry trees. Scientia Horticulturae, 61, 227–239.CrossRefGoogle Scholar
  67. Raghunath, M. K., Nataraj, K. N., Meghana, J. S., Sanjeevan, R. S., Rajan, M. V., & Qadri, S. M. H. (2013). In vitro plant regeneration of Morus indica L. cv. V-1 using leaf explants. American Journal of Plant Sciences, 4(10), 2001–2005.Google Scholar
  68. Rao, A. A., Chaudhury, R., Kumar, S., Velu, D., Saraswat, R. P., & Kamble, C. K. (2007). Cryopreservation of mulberry germplasm core collection and assessment of genetic stability through ISSR markers. International Journal of Industrial Entomology, 15, 23–33.Google Scholar
  69. Rao, A. A., Chaudhury, R., Malik, S. K., Kumar, S., Ramachandra, R., & Quadri, S. M. H. (2009). Mulberry biodiversity conservation through cryopreservation. In Vitro Cellular & Developmental Biology. Plant, 45, 639–649.CrossRefGoogle Scholar
  70. Rao, P. J. S. V. V. N. H., Nuthan, D., & Krishna, K. S. (2010). A protocol for in vitro regeneration of rainfed mulberry varieties through callus phase. European Journal of Biological Science, 2, 80–86.Google Scholar
  71. Saeed, B., Das, M., Haq, Q. M. R., & Khurana, P. (2015). Over expression of beta carotene hydroxylase-1 (bch1) in mulberry, Morus indica cv. K-2, confers tolerance against high-temperature and high irradiance stress induced damage. Plant Cell, Tissue and Organ Culture, 120(3), 1003–1015.CrossRefGoogle Scholar
  72. Saeed, B., Baranwal, V. K., & Khurana, P. (2016). Comparative transcriptomics and comprehensive marker resource development in mulberry. BMC Genomics, 17, 98.  https://doi.org/10.1186/s12864-016-2417-8.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Saha, S., Adhikari, S., Dey, T., & Ghosh, P. (2016). RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene, 7, 7–15.CrossRefPubMedGoogle Scholar
  74. Sajeevan, R. S., Singh, S. J., Nataraja, K. N., & Shivanna, M. B. (2011). An efficient in vitro protocol for multiple shoot induction in mulberry, Morus alba L variety V1. International Research Journal of Plant Science, 2(8), 254–261.Google Scholar
  75. Sajeevan, R. S., Nataraja, K. N., Shivashankara, K. S., Pallavi, N., Gurumurthy, D. S., & Shivanna, M. B. (2017). Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Frontiers in Plant Science, 8, 418.  https://doi.org/10.3389/fpls.2017.00418.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Santos, M. D. O., Romano, E., Yotoko, K. S. C., Tinoco, M. L. P., Dias, B. B. A., & Aragão, F. J. L. (2005). Characterisation of the cacao somatic embryogenesis receptor-like Kinase (SERK) gene expressed during somatic embryogenesis. Plant Science, 168, 723–729.CrossRefGoogle Scholar
  77. Sarkar, T. (2014). Development of transgenic resistance to abiotic stress in groundnut using AtDREB1A gene through Agrobacterium mediated genetic transformation. PhD thesis, Saurashtra University, Rajkot, Gujarat, India.Google Scholar
  78. Sarkar, T., Radhakrishnan, T., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2014). Heterologous expression of AtDREB1A gene in transgenic peanut conferred tolerance to drought and salinity stresses. PLoS One, 9(12), e110507.  https://doi.org/10.1371/journal.pone.0110507.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sarkar, T., Radhakrishnan, T., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2016). Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) crop conferred tolerance to soil-moisture deficit stress. Frontiers in Plant Science, 7, 935.  https://doi.org/10.3389/fpls.2016.00935.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Sarkar, T., Mogili, T., & Sivaprasad, V. (2017). Improvement of abiotic stress adaptive traits in mulberry (Morus spp.): An update on biotechnological interventions. 3 Biotech, 7, 214. https://doi.org/10.1007/s13205-017-0829-z.
  81. Seki, H., & Oshikane, K. (1959). Studies in polyploid mulberry trees III. The valuation of breeded polyploid mulberry leaves and the results of feeding silkworms on them. Res Rep Fac Text Seric Shinshu Univ, 9, 6–15.Google Scholar
  82. Sethi, M., Bose, S., Kapur, A., & Rangaswamy, N. S. (1992). Embryo differentiation in anther culture of mulberry. Indian Journal of Experimental Biology, 30, 1146–1148.Google Scholar
  83. Shajahan, A., Kathiravan, K., & Ganapathi, A. (1995). Induction of embryo-like structures by liquid culture in mulberry (Morus alba L.). Breeding Science, 45, 413–417.Google Scholar
  84. Shajahan, A., Kathiravan, K., & Ganapathi, A. (1997). Selection of salt tolerant mulberry callus tissue culture from cultured hypocotyls segments. In A. I. Khan (Ed.), Frontiers in plant science (pp. 311–313). Hyderabad: The Book Syndicate.Google Scholar
  85. Shoukang, L., Dongfeng, J., & Jun, Q. (1987). In vitro production of haploid plants from mulberry (Morus) anther culture. Scientia Sinica, 30, 853–863.Google Scholar
  86. Smetanska, I. (2008). Production of secondary metabolites using plant cell cultures. Advances in Biochemical Engineering/Biotechnology, 111, 197–228.Google Scholar
  87. Sugimura, Y., Miyazaki, J., Yonebayashi, K., Kotani, E., & Furusawa, T. (1999). Gene transfer by electroporation into protoplasts isolated from mulberry call. Journal of Sericulture Science of Japan, 68, 49–53.Google Scholar
  88. Susheelamma, B. N., Shekhar, K. R., Sarkar, A., Rao, M. R., & Datta, R. K. (1996). Genotypes and hormonal effects on callus formation and regeneration in mulberry. Euphytica, 90, 25–29.Google Scholar
  89. Takebe, I., Labib, G., & Melchers, G. (1971). Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften, 58(6), 318–320.CrossRefGoogle Scholar
  90. Tewary, P. K., Sharma, A., Raghunath, M. K., & Sarkar, A. (2000). In vitro response of promising mulberry (Morus sp.) genotypes for tolerance to salt and osmotic stresses. Plant Growth Regulation, 30(1), 17–21.CrossRefGoogle Scholar
  91. Thomas, T. D. (1999). In vitro production of haploids and triploids of Morus alba L. PhD thesis. University of Delhi, Delhi, India.Google Scholar
  92. Thomas, T. D. (2002). Advances in mulberry tissue culture. The Journal of Plant Biology, 45(1), 7–21.CrossRefGoogle Scholar
  93. Thomas, T. D. (2003). Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biologia Plantarum, 46(4), 529–533.CrossRefGoogle Scholar
  94. Thomas, T. D., Bhatnagar, A. K., Razdan, M. K., & Bhojwani, S. S. (1999). A reproducible protocol for the production of gynogenic haploids of mulberry, Morus alba L. Euphytica, 110, 169–173.CrossRefGoogle Scholar
  95. Thomas, T. D., Bhatnagar, A. K., & Bhojwani, S. S. (2000). Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Reports, 19, 395–399.CrossRefGoogle Scholar
  96. Thorpe, T. A. (2007). History of plant tissue culture. Molecular Biotechnology, 37(2), 169–180.CrossRefPubMedGoogle Scholar
  97. Thumilan, B. M., Kadam, N. N., Biradar, J., Sowmya, H. R., Mahadeva, A., Madhura, J. N., Makarla, U., Khurana, P., & Sreeman, S. M. (2013). Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biology, 13, 194.  https://doi.org/10.1186/1471-2229-13-194.CrossRefGoogle Scholar
  98. Thumilan, B. M., Sajeevan, R. S., Biradar, J., Madhuri, T., Nataraja, K. N., & Sreeman, S. M. (2016). Development and characterization of genic SSR markers from Indian mulberry transcriptome and their transferability to related species of Moraceae. PLoS One, 11(9), e0162909.  https://doi.org/10.1371/journal.pone.0162909.CrossRefGoogle Scholar
  99. Tikader, A., & Dandin, S. B. (2005). Biodiversity, geographical distribution, utilization and conservation of wild mulberry Morus serrata Roxb. Caspian Journal of Environmental Sciences, 3, 179–186.Google Scholar
  100. Tipton, J. (1994). Relative drought resistance among selected southwestern landscape plants. Journal of Arboriculture, 20, 151–155.Google Scholar
  101. Umate, P. (2010). Mulberry improvements via plastid transformation and tissue culture engineering. Plant Signaling & Behavior, 5(7), 785–787.CrossRefGoogle Scholar
  102. Umate, P., Rao, A. V., Yashodhara, V., Rama Swamy, N., & Sadanandam, A. (2000a). Evaluation of specific parameters in the isolation of protoplasts from mesophyll cells of three mulberry cultivars. Sericologia, 40, 469–474.Google Scholar
  103. Umate, P., Rao, A. V., Yashodhara, V., Rama Swamy, N., & Sadanandam, A. (2000b). A simple protocol for rapid and efficient isolation of protoplast from callus cultures of mulberry (Morus indica L.) cv. S13. Sericologia, 40, 647–651.Google Scholar
  104. Umate, P., Venugopal Rao, K., Kiranmayee, K., Jaya Sree, T., & Sadanandam, A. (2005). Plant regeneration of mulberry (Morus indica) from mesophyll-derived protoplasts. Plant Cell, Tissue and Organ Culture, 82, 289–293.CrossRefGoogle Scholar
  105. Vasil, I. K. (2008). A history of plant biotechnology: From the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Reports, 27(9), 1423.CrossRefPubMedGoogle Scholar
  106. Vijayan, K. (2010). The emerging role of genomic tools in mulberry (Morus) genetic improvement. Tree Genetics & Genomes, 6, 613–625.CrossRefGoogle Scholar
  107. Vijayan, K., Chakraborti, S. P., & Roy, B. N. (1998). Regeneration of plantlets through callus culture in mulberry. Indian Journal of Plant Physiology, 3, 310–313.Google Scholar
  108. Vijayan, K., Chakraborti, S. P., & Roy, B. N. (2000). Plant regeneration from leaf explants of mulberry: Influence of sugar, genotype and 6-benzyladenine. Indian Journal of Experimental Biology, 38(5), 504–508.PubMedGoogle Scholar
  109. Vijayan, K., Chakraborti, S. P., & Ghosh, P. D. (2003). In vitro screening of mulberry for salinity tolerance. Plant Cell Reports, 22, 350–357.CrossRefPubMedGoogle Scholar
  110. Vijayan, K., Chakraborti, S. P., & Ghosh, P. D. (2004). Screening of mulberry (Morus spp.) for salinity tolerance through in vitro seed germination. Indian Journal of Biotechnology, 3, 47–51.Google Scholar
  111. Vijayan, K., Tikader, A., & da Silva, J. A. T. (2011a). Application of tissue culture techniques propagation and crop improvement in mulberry (Morus spp). Tree and Forestry Science and Biotechnology, 5(1), 1–13.Google Scholar
  112. Vijayan, K., Srivastava, P. P., Raghunath, M. K., & Saratchandra, B. (2011b). Enhancement of stress tolerance in mulberry. Scientia Horticulturae, 129(4), 511–519.CrossRefGoogle Scholar
  113. Wei, Z., Xu, Z., Huang, J., Xu, N., & Huang, M. (1994). Plants regenerated from mesophyll protoplasts of white mulberry. Cell Research, 4, 183–189.CrossRefGoogle Scholar
  114. Yile, P., & Oshigane, K. (1998). Chromosome number of wild species in Morus cathayana Hemsl and Morus wittiorum Handel-Mazett distribution in China. Journal of Sericulture Science of Japan, 67, 151–153.Google Scholar
  115. Yong, W. T., Henry, E. S., & Abdullah, J. O. (2010). Enhancers of Agrobacterium-mediated transformation of Tibouchina semidecandra selected on the basis of GFP expression. Tropical Life Sciences Research, 21(2), 115–130.PubMedPubMedCentralGoogle Scholar
  116. Zaki, M., Kaloo, Z. A., & Sofi, M. (2011). Micropropagation of Morus nigra L. from nodal segments with axillary buds. World Journal of Agricultural Sciences, 7, 496–503.Google Scholar
  117. Zenk, M. H. (1978). The impact of plant cell cultures on industry. In E. A. Thorpe (Ed.), Frontiers of plant tissue culture (pp. 1–14). Calgary: The International Association of Plant Tissue Culture.Google Scholar
  118. Zenk, M. H., El-Shagi, H., Arens, H., Stäckigt, J., Weiler, E. W., & Deus, B. (1977). Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In W. Barz, E. Reinhard, & M. H. Zenk (Eds.), Plant tissue culture and its biotechnological application (pp. 27–43). Berlin: Springer.CrossRefGoogle Scholar
  119. Zhang, J., Yang, T., Li, R.-F., Zhou, Y., Pang, Y.-L., Liu, L., Fang, R.-J., Zhao, Q.-L., Li, L., & Zhao, W.-G. (2016). Association analysis of fruit traits in mulberry species (Morus L.). The Journal of Horticultural Science and Biotechnology.  https://doi.org/10.1080/14620316.2016.1209989.
  120. Zhong JJ (2001) Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. In T. Scheper (Ed.), Plant cells (Advances in biochemical engineering/biotechnology, Vol. 72, 1st ed., pp. 1–26). Berlin: Springer.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tanmoy Sarkar
    • 1
  • Thallapally Mogili
    • 1
  • S. Gandhi Doss
    • 1
  • Vankadara Sivaprasad
    • 1
  1. 1.Central Sericultural Research & Training Institute (CSRTI)MysuruIndia

Personalised recommendations