Biotechnological Approaches for Genetic Improvement of Fenugreek (Trigonella foenum-graceum L.)

  • M. Aasim
  • F. S. Baloch
  • A. Bakhsh
  • M. Sameeullah
  • K. M. Khawar


Fenugreek (Trigonella foenum-graecum L.) is one of the important medicinal plants of ancient medicinal systems due to its high nutraceutical and pharmaceutical properties. Seeds and leaves of Fenugreek contain phytochemicals like diosgenin and trigonelline. It is a cultivated plant of the modern world for medicinal uses, an edible vegetable, and a forage plant. Advancement in industrial and biotechnological techniques for the isolation of phytochemicals increase the demand of Fenugreek, and its breeding programs are based on improving the secondary metabolites compared to other uses. Recent advancement in modern biotechnological approaches enables researchers to develop elite cultivars of desired traits in a short time. Application of modern techniques like artificial mutations under in vitro conditions, characterization using molecular markers, and development of successful plant tissue culture techniques, genetic transformation techniques, and functional genomics studies have significant potential to improve Fenugreek traits. The study highlights the application of biotechnological approaches used for the development of elite Fenugreek traits for the researchers for future breeding programs. Furthermore, the research gap and areas to improve research have been highlighted in this present study.


Biotechnology Fenugreek Genetic diversity Phytochemicals In vitro 



2,4-dichlorophenoxyacetic acid


Gamborg medium




Indole acetic acid


Indole-3-butyric acid


Indole-3-propionic acid


Marker-assisted selection




Murashige and Skoog medium


α-Naphthaleneacetic acid


Sodium azide


Optical density


Polymerase chain reaction


Polyethylene glycol


Plant growth regulators


Quantitative trait locus






Woody plant


Gamma rays



Authors are thankful to Ms. Areeza Emman for her kind efforts for language improvement and help to improve the quality of work.


  1. Aasim, M., Khawar, K. M., & Ozcan, S. (2009). In vitro shoot regeneration of Fenugreek (Trigonela foenumgraecum L.) Am-Eurasian. Journal of Sustainable Agriculture, 3, 135–138.Google Scholar
  2. Aasim, M., Hussain, N., Umer, E. M., et al. (2010). In vitro shoot regeneration of Fenugreek (Trigonella foenum-graecum L.) using different cytokinins. African Journal of Biotechnology, 9, 7174–7179.Google Scholar
  3. Aasim, M., Khawar, K. M., Yalcin, G., et al. (2014). Current trends in Fenugreek biotechnology and approaches towards its improvement. The American Journal of Social Issues and Humanities, 4, 127–136.Google Scholar
  4. Acharya, S. N., Thomas, J. E., & Basu, S. K. (2006a). Fenugreek: An “old world” crop for the “new world”. Biodiversity, 7, 27–30.CrossRefGoogle Scholar
  5. Acharya, S. N., Srichamroen, A., Basu, S., et al. (2006b). Improvement in the nutraceutical properties of Fenugreek (Trigonella foenum-graecum L.). Songklanakarin. Journal of Science and Technology, 28, 1–9.Google Scholar
  6. Acharya, S. N., Thomas, J. E., & Basu, S. K. (2008). Fenugreek, an alternative crop for semiarid regions of North America. Crop Science, 48, 841–853.CrossRefGoogle Scholar
  7. Afsharie, E., Ranjbar, G. A., & Kazemitabar, S. K., et al. (2011). Callus induction, somatic embryogenesis and plant regeneration in Fenugreek (Trigonella foenum-graecum L.). Young Researchers Club of Islamic Azad Universıty of Shiraz Branch, Shiraz (in Persian).Google Scholar
  8. Agarwal, M., & Jain, S. C. (2015). In vitro regulation of bioactive compounds in Trigonella species by mutagenic treatment. Journal of Plant Sciences, 3, 40–44.Google Scholar
  9. Ahari, D. S., Hassandokht, M. R., Kashi, A. K., et al. (2014). Evaluation of genetic diversity in Iranian Fenugreek (Trigonella foenum-graecum L.) landraces using AFLP markers. Signal Processing: An International Journal, 30, 155–171.Google Scholar
  10. Ahmadiani, A., Javan, M., Semnanian, S., et al. (2001). Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum L leaves extract in the rat. Journal of Ethnopharmacology, 2, 283–286.CrossRefGoogle Scholar
  11. Ahmed, F. A., Ghanem, S. A., Reda, A. A., et al. (2000). Effect of some growth regulators and subcultures on callus proliferation and trigonelline content of Fenugreek (Trigonella foenum-graecum). Bulletin of the National Research Centre (Cairo), 25, 35–46.Google Scholar
  12. Alalwani, B. A., & Alrubaie, E. A. (2016). The effect of water stress and magnetic water in the production of trignolline in callus of Fenugreek (Trigonella foenum graecum L.) plant. International Journal of PharmTech Research, 9, 237–245.Google Scholar
  13. Al-Habori, M., & Raman, A. (2002). Pharmacological properties. In G. Petropoulos (Ed.), Fenugreek-the genus Trigonella (pp. 162–182). London: Taylor & Francis.Google Scholar
  14. Al-Jasass, F. M., & Al Jasser, M. S. (2012). Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions. Scientific World Journal, 2012, 858982.CrossRefGoogle Scholar
  15. Al-Maamari, I. T., Al-Sadi, A. M., & Al-Saady, N. A. (2014). Assessment of genetic diversity in Fenugreek (Trigonella foenum graecum L.) in Oman. International Journal of Agriculture and Biology, 16, 813–818.Google Scholar
  16. Al-Mahdawe, M. M., Al-Mallah, M. K., & Al-Attrakchii, A. O. (2013). Somatic embryogenesis and plant regeneration from cotyledonary node’s calli of Trigonella foenum-graecum L. Jornal of Biotechnology Research Center, 7, 29–35.Google Scholar
  17. Al-Meshal, I. A., Parmar, N. S., Tariq, M., et al. (1995). Gastric anti-ulcer activity in rats of Trigonella foenum graecum (Hu-Lu-Pa). Fitoterapia, 56, 232–235.Google Scholar
  18. Amin, A., Alkaabi, A., Al-Falasi, S., et al. (2005). Chemopreventive activities of Trigonella foenum-graecum (Fenugreek) against breast cancer. Cell Biology International, 8, 687–694.CrossRefGoogle Scholar
  19. Anis, A., & Wani, A. A. (1997). Caffeine induced morpho-cytological variability in Fenugreek, Trigonella foenum-graecum L. Cytologia, 62, 343–349.CrossRefGoogle Scholar
  20. Aswar, U., Bodhankar, S. L., Mohan, V., et al. (2010). Effect of furostanol glycosides from Trigonella foenum-graecum on the reproductive system of male albino rats. Phytotherapy Research, 24, 1482–1488.CrossRefPubMedGoogle Scholar
  21. Auerbach, C. (1961). Chemicals and their effects. Proceedings for symposium on mutation and plant breeding. Cornell University, 25, 585–621.Google Scholar
  22. Azam, M., & Biswas, A. K. (1989). Callus culturing its maintenance and cytological variations in Trigonella foenum-graecum. Current Science, 58, 844–847.Google Scholar
  23. Balch, P. A. (2003). Prescription for dietary wellness. New York: Penguin.Google Scholar
  24. Baloch, F. S., Alsaleh, A., Shahid, M. Q., et al. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One, 12(1), e0167821. Scholar
  25. Bashir, S., Wani, A. A., & Nawchoo, I. A. (2013a). Studies on mutagenic effectiveness and efficiency in Fenugreek (Trigonella foenum-graecum L.). African Journal of Biotechnology, 12, 2437–2440.Google Scholar
  26. Bashir, S., Wani, A. A., & Nawchoo, I. A. (2013b). Mutagenic sensitivity of Gamma rays, EMS and Sodium azide in Trigonella foenumgraecum L. Science Research Reporter, 3, 20–26.Google Scholar
  27. Basu, S. K. (2006). Seed production technology for Fenugreek (Trigonella foenum-graecum L.) In the Canadian Prairies (Ms Thesis). University of Lethbridge, Faculty of Arts Sci, Lethbridge, Alberta, Canada.Google Scholar
  28. Basu, S. K., Acharya, S. N., & Thomas, J. E. (2008). Genetic improvement of Fenugreek (Trigonella foenum-graecum L.) through EMS induced mutation breeding for higher seed yield under Western Canada prairie conditions. Euphytica, 160, 249–258.CrossRefGoogle Scholar
  29. Basu, A., Basu, S. K., Kumar, A., et al. (2014). Fenugreek (Trigonella foenum-graecum L.), a potential new crop for Latin America. The American Journal of Social Issues and Humanities, 4, 1–2.Google Scholar
  30. Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., et al. (2013). Comparative study on hypocholesterolemic and antioxidant activities of various extracts of Fenugreek seeds. Food Chemistry, 2, 1448–1453.CrossRefGoogle Scholar
  31. Betty, R. (2008). Spice India; The many healing virtues of Fenugreek. pp. 17–19.Google Scholar
  32. Blumenthal, M., Goldberg, A., & Brinckmann, J. (2000). Herbal medicine: Expanded commission E monographs (pp. 103–133). Newton: American Botanical Council, Integrative Medicine Communications.Google Scholar
  33. Brain, K. R., & Williams, M. H. (1983). Evidence for an alternative rate from sterol to sapogenin in suspension cultures from Trigonella foenumgraecum. Plant Cell Reports, 2, 7–10.PubMedGoogle Scholar
  34. Burdak, A., Jakhar, M. L., Nagar, P., et al. (2017). In Vitro regeneration in Fenugreek (Trigonella foenum-graecum L.). Research Journal of Chemical & Environmental Sciences, 5, 65–70.Google Scholar
  35. Cerdon, C., Rahier, A., Taton, M., et al. (1945). Effect of diniconazole on sterol composition of roots and cell suspension cultures of Fenugreek. Phytochemistry, 39, 883–893.CrossRefGoogle Scholar
  36. Chatterjee, S., Variyar, P. S., & Sharma, A. (2010). Bioactive lipid constituents of Fenugreek. Food Chemistry, 119(1), 349–353.CrossRefGoogle Scholar
  37. Chaudhary, A. K., & Singh, V. V. (2001). An induced detenninate mutant in Fenugreek (Trigonella foenum-graecum L.). Journal of Spices and Aromatic Crops, 10, 51–53.Google Scholar
  38. Chaudhary, S., Chikara, S. K., Sharma, M. C., et al. (2015). Elicitation of diosgenin production in Trigonella foenum-graecum (Fenugreek) seedlings by Methyl Jasmonate. International Journal of Molecular Sciences, 16, 29889–29899.PubMedCentralCrossRefPubMedGoogle Scholar
  39. Chopra, V. L. (2005). Mutagenesis: Investigating the process and processing the outcome for crop improvement. Current Science, 89, 353–359.Google Scholar
  40. Choudhary, S., Meena, R. S., Singh, R., et al. (2013). Assessment of genetic diversity among Indian Fenugreek (Trigoinella foenum-graecum L.) varieties using morphological and RAPD markers. Legume Research, 36, 289–298.Google Scholar
  41. Christen, P. (2002). Trigonella species: In Vitro culture and production of secondary metabolites. In T. Nagata & Y. Ebizuka (Eds.), Medicinal and aromatic plants (Vol. 12) (Biotechnology in Agriculture and Forestry 51, pp. 306–348). Springer: New York.Google Scholar
  42. Ciura, J., Szeliga, M., & Tyrka, M. (2015). Optimization of in vitro culture conditions for accumulation of diosgenin by Fenugreek. Journal of Medicinal Plants Studies, 3, 22–25.Google Scholar
  43. Ciura, J., Szeliga, M., Grzesik, M., et al. (2017). Next-generation sequencing of representational difference analysis products for identification of genes involved in diosgenin biosynthesis in Fenugreek (Trigonella foenum-graecum). Planta, 245, 977–991.PubMedCentralCrossRefPubMedGoogle Scholar
  44. Dangi, R. S., LAgu, M. D., Choudhary, L. B., et al. (2004). Assessment of genetic diversity in Trigonella foenu-graceum and Trigonella caerulea collecting using ISSR and RAPD markers. BMC Plant Biology, 4, 13. Scholar
  45. De Candolle, A. (1964). Origin of cultivated plants (p. 468). New York: Hafner.Google Scholar
  46. Duke, J. A., Reed, C. F., & Weder, J. K. P. (1981). Tamarindus indica: Handbook of legumes of world economic importance. New York: Plenum Press.CrossRefGoogle Scholar
  47. Elaleem, K. G. A., Ahmed, M. M., & Saeed, B. E. A. E. (2014). Study of the in vitro callus induction Trigonella foenum-graecum L. from cotyledons and hypocotyls explants supplemented with various plant hormones. International Journal of Current Microbiology and Applied Sciences, 3, 486–493.Google Scholar
  48. El-Bahr, M. K. (1989). Influence of sucrose and 2, 4-D on Trigonella foenum-graecum tissue culture. African Journal of Agricultural Science, 16, 87–96.Google Scholar
  49. El-Nour, M. E. M., Mohammed, L. S., et al. (2013). In vitro callus induction of Fenugreek (Trigonella foenum-graecum L.) using differentt media with different auxins concentrations. The Agriculture and Biology Journal of North America, 4, 243–251.CrossRefGoogle Scholar
  50. El-Nour, M. E. M., Ali, A. M. A., & Bader Eldin, A. S. T. (2015). Effect of different concentrations of auxins and combination with kinetın on callus initiation of Trigonella foenum- graecum. International Journal of Technical and Research Applications, 3, 117–122.Google Scholar
  51. Fazli, F. R. Y., & Hardman, R. (1968). The spice, Fenugreek (Trigonella foenum-graecum L.): Its conmmercial varieties of seed as a source. Tropical Science, 10, 66–78.Google Scholar
  52. Fehr, W. R. (1993). Principles of cultivar development: Theory and technique (Vol. 1). New York: Macmillan Publishing Company.Google Scholar
  53. Fehr, W. R. (1998). Principles of cultivar development: Theory and technique (p. 536). New York: Macmillan Publishing Company.Google Scholar
  54. Gadge, P. J., Wakle, V. R., Muktawar, A. A., et al. (2012). Effect of mutagens on morphological characters of Fenugreek (Trigonella foenum-graecum L.). The Association of Japanese Business Studies, 7, 178–181.Google Scholar
  55. Haliem, E. A., & Al-Huqail, A. A. (2014). Correlation of genetic variation among wild Trigonella foenum graecum L. accessions with their antioxidant potential status. Genetics and Molecular Research, 13, 10464–10481.CrossRefPubMedGoogle Scholar
  56. Harish, A. K. G., Ram, K., Singh, B., et al. (2011). Molecular and biochemical characterization of different accessions of Fenugreek (Trigonella foenum-graecum L.). Libyan Agriculture Research Center Journal International, 2, 150–154.Google Scholar
  57. Hegazy, A., & Ibrahim, T. (2009). Iron bioavailability of wheat biscuits supplemented by Fenugreek seed flour. World Journal of Agricultural Sciences, 5, 769–776.Google Scholar
  58. Hora, A., Malik, C. P., & Kumari, B. (2016). Assessment of genetic diversity of Trigonella foenumgraecum L. in northern India using RAPD and ISSR markers. International Journal of Pharmacy and Pharmaceutical Sciences, 8, 179–183.Google Scholar
  59. Hussein, E. A., & Aqlan, E. M. (2011). Effect of mannitol and sodium chloride on some total secondary metabolites of Fenugreek calli cultured ın vitro. Plant Tissue Culture and Biotechnology, 21, 35–43.Google Scholar
  60. Isikli, N. D., & Karababa, E. (2005). Rheological characterization of Fenugreek paste (cemen). Journal of Food Engineering, 69, 185–190.CrossRefGoogle Scholar
  61. Jain, S. C., & Agarwal, M. (1987). Effect of chemical mutagens on steroidal sapogenins in Trigonella species. Phytochemistry, 26, 2203–2205.CrossRefGoogle Scholar
  62. Jani, R., Udipi, S. A., & Ghugre, P. S. (2009). Mineral content of complementary foods. Indian Journal of Pediatrics, 76, 37–44.CrossRefPubMedGoogle Scholar
  63. Jasim, B., Thomas, R., Mathew, J., et al. (2017). Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal, 25, 443–447.CrossRefPubMedGoogle Scholar
  64. Jiang, W., Gao, L., Li, P., et al. (2017). Metabonomics study of the therapeutic mechanism of Fenugreek galactomannan on diabetic hyperglycemia in rats, byultra-performance liquid chromatography coupled with quadrupoletime-of-flight mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 15, 1044–1045.Google Scholar
  65. Joshi, J. G., & Handler, P. (1960). Biosynthesis of Trigonelline. The Journal of Biological Chemistry, 235, 2981–2983.PubMedGoogle Scholar
  66. Kapoor, K., & Srivastav, A. (2010). Meiotic anomalies in sodium azide induced tetraploid and mixoploid of Trigonella foenum-graecum. Cytologia, 75, 409–419.CrossRefGoogle Scholar
  67. Kavci, E., Taşbaşi, B. B., Aasim, M., et al. (2017). Efficacy of explant age, sucrose and thidiazuron on in vitro shoot regeneration of Fenugreek (Trigonella foenum-graecum L.). In 1st international congress on medicinal and aromatic plants -natural and healthy Life. 10–12 May 2017 Konya, Turkey.Google Scholar
  68. Kaviarasan, S., Vijayalakshmi, K., & Anuradha, C. (2004). Polyphenol-rich extract of Fenugreek seeds protect erythrocytes from oxidative damage. Plant Foods for Human Nutrition, 59(4), 143–147.CrossRefPubMedGoogle Scholar
  69. Khanna, P., & Jain, S. C. (1973). Diosgenin, gitogenin and tigogenin from Trigonella foenum-graecum tissue cultures. Lloydia, 36, 96–98.Google Scholar
  70. Khanna, P., Jain, S. C., & Bansal, R. (1975). Effect of cholesterol on growth and production of diosgenin, gitogenin, tigogenin and sterols in suspension cultures. Indian Journal of Experimental Biology, 13, 211–213.Google Scholar
  71. Khawar, K. M., Gulbitti, S. O., Cocu, S., et al. (2004). In vitro crown galls induced by Agrobacterium tumefaciens strain A281 (pTiBo542) in Trigonella foenum-graecum. Biologia Plantarum, 48, 441–444.CrossRefGoogle Scholar
  72. Ktari, N., Feki, A., Trabeisi, I., et al. (2017). Structure, functional and antioxidant properties in Tunisian beefsausage of a novel polysaccharide from Trigonella foenum-graecum seeds. International Journal of Biological Macromolecules, 98, 169–181.CrossRefPubMedGoogle Scholar
  73. Kumar, P., & Bhandari, U. (2015). Common medicinal plants with antiobesity potential: A special emphasis on Fenugreek. Ancient Science of Life, 35, 58–63.PubMedCentralCrossRefPubMedGoogle Scholar
  74. Kumar, V., Srivastava, N., Singh, A., et al. (2012). Genetic diversity and identification of variety-specific AFLP markers in Fenugreek (Trigonella foenum-graecum). African Journal of Biotechnology, 11, 4323–4329.CrossRefGoogle Scholar
  75. Laxmi, V., & Datta, S. K. (1987). Chemical and physical mutagenesis in Fenugreek. Biological Membranes, 13, 64–68.Google Scholar
  76. Laxmi, V., Gupta, M. N., Dixit, B. S., et al. (1980). Effects of chemical and physical mutagens on Fenugreek oil. Indian Drugs, 18, 62–65.Google Scholar
  77. Leela, N. K., & Shafeekh, K. M. (2008). Fenugreek. In V. A. Parthasarathy, B. Chempakam, & T. J. Zachariah (Eds.), Chemistry of spices (pp. 242–259). Wallingford: CAB International.CrossRefGoogle Scholar
  78. Mahmoud, N. Y., Salem, R. H., & Mater, A. A. (2012). Nutritional and biological assessment of wheat biscuits supplemented by Fenugreek plant to improve diet of anemic rats. American Journal of Nursing, 1, 1–9.Google Scholar
  79. Mamatha, N. C., Tehlan, S. K., Srikanth, M., et al. (2017). Molecular characterization of Fenugreek (Trigonella foenum-graecum L.) genotypes using RAPD markers. International Journal of Current Microbiology and Applied Sciences, 6, 2573–2581.CrossRefGoogle Scholar
  80. McCormick, K. M., Norton, R. M., & Eagles, H. A. (2009). Phenotypic variation within a Fenugreek (Trigonella foenum-graecum L.) germplasm collection. II. Cultivar selection based on traits associated with seed yield. Genetic Resources and Crop Evolution, 56, 651–661.CrossRefGoogle Scholar
  81. Meghwal, M., & Goswami, T. K. (2012). A review on the functional properties, nutritional content, medicinal utilization and potential application of Fenugreek. Journal of Food Processing and Technology, 3, 181–202.CrossRefGoogle Scholar
  82. Mehrafarin, A., Qaderi, A., Rezazadeh, S. H., et al. (2010). Bioengineering of important secondary metabolites and metabolic pathways in Fenugreek (Trigonella foenumgraecum L.). Journal of Medicinal Plants, 9, 1–18.Google Scholar
  83. Mehrafarin, A., Rezazadeh, S. H., Naghdi, B. H., et al. (2011). Review on biology, cultivation and biotechnology of Fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant and multipurpose. Journal of Medicinal Plants, 10, 6–24.Google Scholar
  84. Merkli, A., Christen, P., & Kapetanidis, I. (1997). Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Reports, 16, 632–636.CrossRefGoogle Scholar
  85. Micke, A., & Donini, B. (1993). Induced mutations. In M. D. Hayward, N. O. Bosemark, & I. Romagosa (Eds.), Plant breeding principles and prospects (pp. 52–62). London: Chapman and Hall.CrossRefGoogle Scholar
  86. Miraldi, E., Ferri, S., & Mostaghimi, V. (2001). Botanical drugs and preparations in the traditional medicine of West Azerbaijan (Iran). Journal of Ethnopharmacology, 2, 77–87.CrossRefGoogle Scholar
  87. Modi, I. R., Ranvid, C. E., Cindura, R., et al. (2016). Assessment of genetic variability in Trigonella cultivars by RAPD analysis. Journal of Biochemistry and Biotechnology, 5, 511–517.Google Scholar
  88. Mohamed, W. S., Mostafa, A. M., Mohamed, K. M., et al. (2015). Effects of Fenugreek, Nigella, and termis seeds in nonalcoholic fatty liver in obese diabetic albino rats. Arab Journal of Gastroenterology, 16, 1–9.CrossRefPubMedGoogle Scholar
  89. Montgomery, J. E., King, J. R., & Doepel, L. (2006). Fenugreek as forage for dairy cattle. In Proceedings of the 26th Western Canadian Dairy Seminar (WCDS) Advances in Dairy Technology; 4–7 March 2008; Red Deer, Alberta: WCDS; 2006. Vol. 20, Abstract, p. 356.Google Scholar
  90. Moradi kor, N., & Moradi, K. (2013). Physiological and pharmaceutical effects of Fenugreek (Trigonella foenum-graecum L.) as a multipurpose and valuable medicinal plant. The Global Journal of Medicinal Plants Research, 1, 199–206.Google Scholar
  91. Naidu, M. M., Shyamala, B. N., Naik, J. P., et al. (2011). Chemical composition and antioxidant activity of the husk and endosperm of Fenugreek seeds. LWT – Food Science and Technology, 44, 451–456.CrossRefGoogle Scholar
  92. Najma, Z. B., Pardeep, K., Asia, T., et al. (2011). Metabolic and molecular action of Trigonella foenum-graecum (Fenugreek) and trace metals in experimental diabetic tissues. Journal of Biosciences, 36, 383–396.CrossRefGoogle Scholar
  93. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy Sciences of the United States of USA, 70, 3321–3323.Google Scholar
  94. Olaiya, C. O., & Soetan, K. O. (2014). A review of the health benefits of Fenugreek (Trigonella foenum-graecum L.): Nutritional, biochemical and pharmaceutical perspectives. The American Journal of Social Issues and Humanities, 4, 3–12.Google Scholar
  95. Oncina, R., delrio, J. A., Gomez, P., et al. (2000). Effect of ethylene on diosgenin accumulation in callus culture of Trigonella foenumgraecum L. Food Chemistry, 76, 475–479.CrossRefGoogle Scholar
  96. Panda, S., Biswas, S., & Kar, A. (2013). Trigonelline isolated from Fenugreek seed protects against isoproterenol-induced myocardial injury through down-regulation of Hsp27 and a B-crystallin. Nutrition, 29, 1395–1403.CrossRefPubMedGoogle Scholar
  97. Pant, N. C., Agarwal, R., & Agarwal, S. (2013). Mannitol induced drought stress on calli of var RMt-303. Indian Journal of Experimental Biology, 52, 1128–1137.Google Scholar
  98. Petropoulos, G. A. (1973). Agronomic, genetic and chemical studies of Trigonella foenum graecum L. PhD dissertation. England: Bath University.Google Scholar
  99. Petropoulos, G. A. (2002). Fenugreek, The genus Trigonella (p. 255). London/New York: Taylor and Francis.CrossRefGoogle Scholar
  100. Petropoulos, G. A. (2003). Fenugreek: The genus Trigonella. Boca Raton: CRC Press.Google Scholar
  101. Piao, C. H., Bui, T. T., Song, C. H., et al. (2017). Trigonella foenum-graecum alleviates airway inflammation of allergic asthma in ovalbumin-induced mouse model. Biochemical and Biophysical Research Communications, 482, 1284–1288.CrossRefPubMedGoogle Scholar
  102. Prabakaran, G., & Ravimycin, T. (2012). Studies on in vitro propagation and biochemical analysis of Trigonella foenum-graecum L. The Association of Japanese Business Studies, 7, 88–91.Google Scholar
  103. Prabha, R., Dixit, V., & Chaudhary, B. R. (2010). Sodium azide-induced mutagenesis in Fenugreek (Trigonella foenum graecum Linn). Legume Research, 33, 235–241.Google Scholar
  104. Prajapati, D. B., Ravindrababu, Y., & Prajapati, B. H. (2010). Genetic variability and character association in Fenugreek (Trigonella foenum-graecum L.). Journal of Spices and Aromatic Crops, 19, 61–64.Google Scholar
  105. Premnath, R., Sudisha, J., Lakshmi Devi, N., & Aradhya, S. M. (2011). Anti-bacterial and anti-oxidant activities of fenugreek (Trigonella foenum-graceum L.) leaves. Research Journal of Medicinal Plants.
  106. Rababah, T. M., Ereifej, K. I., Esoh, R. B., et al. (2011). Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Natural Product Research, 25(6), 596–605.CrossRefPubMedGoogle Scholar
  107. Radwan, S. S., & Kokate, C. K. (1980). Production of higher levels of Trigonellin by cell cultures of Trigonella foenum-graecum than by the differentiated plant. Planta, 147, 340–344.CrossRefPubMedGoogle Scholar
  108. Raheleh, A., Hasanloo, T., & Khosroshali, M. (2011). Evaluation of trigonelline production in Trigonella foenum-graecum hairy root cultures of two Iranian masses. Pancreas Open Journal, 4, 408–412.Google Scholar
  109. Rajoriya, C. M., Ahmad, R., Rawat, R. S., et al. (2016). Studies on induction of mutation in Fenugreek (Trigonella fonum-graecum). International Journal for Research in Applied Science and Engineering Technology, 4, 333–373.Google Scholar
  110. Raju, J., Gupta, D., Rao, A. R., et al. (2001). Trigonella foenum graecum (Fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Molecular and Cellular Biochemistry, 224, 45–51.CrossRefPubMedGoogle Scholar
  111. Raju, J., Patlolla, J. M., Swamy, M. V., et al. (2004). Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiology, Biomarkers & Prevention, 8, 1392–1398.Google Scholar
  112. Ramesh, B. K., Yogesh, R. H. L., Kantikar, S. M., et al. (2010). Antidiabetic and histopathological analysis of Fenugreek extract on alloxan induced diabetic rats. International Journal of Drug Development and Research, 2, 356–364.Google Scholar
  113. Randhawa, G. J., Singh, M., Gangopadhyay, K. K., et al. (2012). Genetic analysis of Fenugreek (Trigonella foenum-graecum) accessions using morphometric and ISSR markers. Indian Journal of Agricultural Sciences, 82, 393–401.Google Scholar
  114. Rezaeian, S. (2011). Assessment of Diosgenin production by Trigonella foenum-graecum L. in vitro condition. American Journal of Plant Physiology, 6, 261–268.CrossRefGoogle Scholar
  115. Roy, R. P., & Singh, A. (1968). Cytomorphological studies of the colchicine-induced tetraploid Trigonella foenum-graecum. Genetics Iberian, 20, 37–54.Google Scholar
  116. Seyedardalan, A., Mahmood, K., & Reza, B. (2013). Direct somatic embryogenesis in Fenugreek (Trigonella foenum-graecum L.). Global Journal of Research on Medicinal Plants & Indigenous Medicine, 2, 624–629.Google Scholar
  117. Shahabzadeh, Z., Heidari, B., & Hafez, R. F. (2013). Induction of transgenic hairy roots in Trigonella foenum-graceum co-cultivated with Agrobacterium rhizogenes harboring a GFP gene. Journal of Crop Science and Biotechnology, 16, 263–268.CrossRefGoogle Scholar
  118. Sharma, R. D. (1986). Effects of seeds and leaves on blood glucose and serum insulin responses in human subjects. Nutrition Research, 6, 1353–1364.CrossRefGoogle Scholar
  119. Sharma, M. S., & Choudhary, P. R. (2016). Effect of Fenugreek seeds powder (Trigonella foenum-graecum L.) on experimental ınduced hyperlipidemia in rabbits. Journal of Dietary Supplements, 12, 1–8. Scholar
  120. Shekhawat, N. S., & Galston, A. W. (1983). Mesophyll protoplasts of Fenugreek (Trigonella foenum-graecum L.): Isolation, culture and shoot regeneration. Plant Cell Reports, 2, 119–121.CrossRefPubMedGoogle Scholar
  121. Siddiqui, S., Meghvansi, M. K., & Hasan, Z. (2007). Cytogenetic changes induced by sodium azide (NaN3) on Trigonella foenum-graecum L. seeds. South African Journal of Botany, 73, 632–635.CrossRefGoogle Scholar
  122. Singh, A., & Singh, D. (1976). Karyotype studies in Trigonella. Nucleus (Calcutta), 19, 13–16.Google Scholar
  123. Sowmya, P., & Rajyalakshmi, P. (1999). Hypocholesterolemic effect of germinated Fenugreek seeds in human subjects. Plant Food for Human Nutrition, 4, 359–365.CrossRefGoogle Scholar
  124. Sauvare, Y., Pett, P., Baissao, Y., & Ribes, G. (2000). Chemistry and pharmacology of fenugreek. In G. Mazza & B. D. Oomah (Eds.), Herbs, botanicals and teas (pp. 107–129). Lancaster: Technomic Publishing Company Inc.Google Scholar
  125. Sundaram, S., & Purwar, S. (2011). Assessment of genetic diversity among Fenugreek (Trigonella foenum-graecum L.), using RAPD molecular markers. Journal of Medicinal Plants Research, 5, 1543–1548.Google Scholar
  126. Taşbaşi, B. B., Kavci, E., Kirtiş, A., Day, S., Aasim, M., & Khawar, K. M. (2017). Efficacy of sucrose and thidiazuron on in vitro shoot regeneration of Fenugreek (Trigonella foenum-graecum L.). In 1st international congress on medicinal and aromatic plants -natural and healthy Life. 10–12 May 2017 Konya, Turkey.Google Scholar
  127. Taylor, W. G., Elder, J. L., Chang, P. R., et al. (2000). Micro determination of diosgenin from Fenugreek (Trigonella foenumgraecum) seeds. Journal of Agricultural and Food Chemistry, 48, 5206–5210.CrossRefPubMedGoogle Scholar
  128. Tayyaba, Z., Hussain, S. N., & Hasan, S. K. (2001). Evaluation of the oral hypoglacemic effects of Trigonella foenum-graecum L (Methi) in normal mice. Journal of Ethnopharmacology, 75, 191–195.CrossRefGoogle Scholar
  129. Thomas, J. E., Bandara, M., Lee, E. L., et al. (2011). Biochemical monitoring in Fenugreek to develop functional food and medicinal plant variants. New Biotechnology, 28, 110–117.CrossRefPubMedGoogle Scholar
  130. Toker, C., Yadav, S. S., & Solanki, I. S. (2007). Mutation breeding. In S. S. Yadav, D. McNeil, & P. C. Stevenson (Eds.), Lentil: An ancient crop for modern times. Dordrecht: Springer Netherlands.Google Scholar
  131. Tomar, R. S., Parakhia, M. V., Rathod, V. M., et al. (2014). A comparative analysis of ISSR and RAPD markers for studying genetic diversity in Trigonella foenum-graecum genotypes. Research Journal of Biotechnology, 9, 89–95.Google Scholar
  132. Trisonthi, P., Baccou, J. C., & Sauvaire, Y. (1980). Trial to improve production of steroidal sapogenin by Fenugreek (Trigonella foenum-graecum L.) tissue grown in vitro. C R Hebd Seances Acad Sci D, 291, 357–360.Google Scholar
  133. Tsiri, D., Chinou, I., Halabalaki, M., et al. (2009). The origin of copper-induced medicarpin accumulation and its secretion from roots of young Fenugreek seedlings are regulated by copper concentration. Plant Science, 176, 367–374.CrossRefGoogle Scholar
  134. Vaezi, Z., Daneshvar, M. H., Heidari, M., et al. (2015). Indirect regeneration plant Fenugreek (Trigonella foenumgraecum L), with the use of plant growth regulators in vitro. Bulletin of Environment, Pharmacology and Life Sciences, 4, 103–108.Google Scholar
  135. Vaidya, Y., Ghosh, A., & Kumar, V., et al. (2012). De Novo transcriptome sequencing in Trigonella foenum-graecum L. to identify genes involved in the biosynthesis of diosgenin. TPG.
  136. Xue, W., Lei, J., Li, X., & Zhang, R. (2011). Trigonella foenum-graecum seed extract protects kidney function and morphology in diabetic rats via its antioxidant activity. Nutrition Research, 31(7), 555–562.CrossRefPubMedGoogle Scholar
  137. Yadav, S. S., McNeil, D. L., & Stevenson, P. C. (2007). Lentil: An ancient crop for modern times. Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  138. Yoshikawa, T., Toyokuni, S., Yamamoto, Y., & Naito, Y. (2000). Free radicals in chemistry biology and medicine. London: OICA Internationa.Google Scholar
  139. Zandi, P., Basu, S. K., Cetzal-IX, W., et al. (2017). Fenugreek (Trigonella foenum-graecum L.): An ımportant medicinal and aromatic crop. In P. Zandi, S. K. Basu, W. Cetzal-Ix, & Mojtaba (Eds.), Active ingredients from aromatic and medicinal plants. InTech.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • M. Aasim
    • 1
  • F. S. Baloch
    • 2
  • A. Bakhsh
    • 3
  • M. Sameeullah
    • 4
  • K. M. Khawar
    • 5
  1. 1.Department of Biotechnology, Faculty of ScienceNecmettin Erbakan UniversityKonyaTurkey
  2. 2.Department of Field Crops, Faculty of Agricultural and Natural ScienceAbant Izzet Baysal UniversityBoluTurkey
  3. 3.Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and TechnologiesNigde UniversityNigdeTurkey
  4. 4.Department of Horticulture, Faculty of Agricultural and Natural ScienceAbant Izzet Baysal UniversityBoluTurkey
  5. 5.Department of Field Crops, Faculty of AgricultureAnkara UniversityAnkaraTurkey

Personalised recommendations