Advertisement

Phytochemical Analysis with Special Reference to Leaf Saponins in Gnidia glauca (Fresen.) Gilg.

  • Torankumar Sannabommaji
  • Vadlapudi Kumar
  • D. V. Poornima
  • Hari Gajula
  • J. Rajashekar
  • T. Manjunatha
  • Giridhara Basappa
Chapter

Abstract

Gnidia glauca (Fresen.) Gilg. belongs to Thymelaeaceae family and has been found to possess a variety of traditional phytomedicinal and agrochemical applications. The leaves of G. glauca are a rich source of phytochemicals like alkaloids, phenols, flavonoids, tannins, glycosides, saponins, terpenoids, and steroids. Among these phytochemicals, saponins were extracted into 80% methanol. G. glauca leaf saponin fraction isolate has been subjected for qualitative analysis by hemolytic assay and quantitative analysis by conventional chromatography like TLC and spectroscopy methods. Results confirm that G. glauca leaf saponin fraction isolate contains triterpenoid saponins. Further characterization has been carried out by RP-HPLC, LC/MS-ESI, and FTIR. Results suggest that G. glauca leaf saponin fraction contains triterpenoid saponins that belong to basic skeletons of oleanane and ursane types of triterpenoid saponins. The investigations provided in the present chapter provide a comprehensive account of knowledge regarding phytochemical analysis of saponins present in G. glauca leaves.

Keywords

Saponins G. glauca (Fresen.) Gilg. TLC RP-HPLC LCMS-ESI FTIR 

References

  1. Almutairi, M. S., & Ali, M. (2015). Direct detection of saponins in crude extracts of soapnuts by FTIR. Natural Product Research, 29(13), 1271–1275.CrossRefPubMedGoogle Scholar
  2. Amarajeewa, B. W. R. C., Mudalige, A. P., & Kumar, V. (2007). Chemistry and mosquito larvicidal activity of Gnidia glauca. Proceedings of the Peradeniya university Research sessions, November 2007. Section 2 in Faculty of Science and Postgraduate Institute of Biological Science, Vol 12(1), PURSE, Sri Lanka, pp. 101–102.Google Scholar
  3. Ashvin, G. G., Rahul, S. P., & Rajaram, S. S. (2015). Gnidia Glauca (Fresen) Gilg.: Phytochemical and antibacterial view. International Journal of Recent Scientific Research, 6(6), 4854–4857.Google Scholar
  4. Borris, R. P., & Cordell, G. A. (1984). Studies of the thymelaeaceae II. Anti-neoplastic principles of Gnidia kraussiana. Journal of Natural Products, 47, 270–278.CrossRefPubMedGoogle Scholar
  5. Bruneton, J. (2012). Principles of herbal pharmacology. In K. Bone & S. Mills (Eds.), Principles and practice of phytotherapy: Modern herbal medicine (2nd ed., pp. 45–82). Edinburgh: Churchill Livingstone/Elsevier.Google Scholar
  6. Da Silva, B. P., de Sousa, A. C., Silva, G. M., Mendes, T. P., & Parente, J. P. (2002). A new bioactive steroidal saponin from Agave attenuata. Zeitschrift für Naturforschung, 57c, 423–428.CrossRefGoogle Scholar
  7. Edeoga, H. O., Okwu, D. E., & Mbaeble, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4, 685–688.CrossRefGoogle Scholar
  8. Franke, K., Porzel, A., & Schmidt, J. (2002). Flavone-coumarin hybrids from G. socotrana. Phytochemistry, 61, 873–878.CrossRefPubMedGoogle Scholar
  9. Ghosh, S., Derle, A., Ahire, M., More, P., & Jagtap, S. (2013). Phytochemical analysis and free radical scavenging activity of medicinal plants Gnidia glauca and Dioscorea bulbifera. PLoS One, 8(12), e82529.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Harborne, J. B. (1984). Phytochemical methods (2nd ed.p. 288). London: Springer/Chapman and Hall.CrossRefGoogle Scholar
  11. Hiai, S., Oura, H., & Nakajima, T. (1976). Color reaction of some saposenins with vanillin and sulfuric acid. Planta Medica, 29, 116–122.CrossRefPubMedGoogle Scholar
  12. Javaregowda, K., & Naik, L. K. (2007). Ovicidal properties of plant extracts against the eggs of teak defoliator, hyblaea puera Cramer. The Journal of Agricultural Science, 20, 291–293.Google Scholar
  13. Kareru, P. G., Kenji, G. M., Gachanja, A. N., Keriko, J. M., & Mungai, G. (2005). Traditional medicines among the Embu and Mbeere peoples of Kenya. African Journal of Traditional, Complementary and Alternative Medicines, 4, 75–86.Google Scholar
  14. Mohamed, R., Franqoise, F., Abdelkader, C., & Max, H. (2004). Purification and characterization of the haemolytic saponins of Silene vulgaris (Moench) Garcke native to Morocco. Acta Botanica Gallica, 151, 173–180.CrossRefGoogle Scholar
  15. Nyiredy, S., Erdelmeier, C. A. J., Meier, B., & Sticher, O. (1985). The “PRISMA” mobile phase optimization model in thin layer chromatography – separation of natural compounds. Planta Medica, 51(3), 241–246.CrossRefGoogle Scholar
  16. Parixit, B., Rajarajeshwari, N., Ganapaty, S., & Santosh, P. (2013). The Gnidia genus: A review. Asian Journal of Biomedical Pharmaceutical Sciences, 3(19), 1–31.Google Scholar
  17. Silverstein, M. R., Webster, X. F., & Kiemle, J. D. (2005). Spectrometric identification of organic compound. In Infrared spectroscopy (7th ed., pp. 72–126). New York: Wiley.Google Scholar
  18. Sonam, P. (2015). Preliminary phytochemical screening and in vitro antibacterial activity of Bauhinia variegata Linn. Against human pathogens. Asian Pacific Journal of Tropical Disease, 5, 123–129.CrossRefGoogle Scholar
  19. Sotheeswaran, S. (1988). Screening for saponins using the blood hemolysis test: An undergraduate laboratory experiment. Journal of Chemical Education, 65, 161–162.CrossRefGoogle Scholar
  20. Syed, J., Dileep, N., Rakesh, K. N., Pavithra, G. M., Vinayaka, K. S., & PrashithKekuda, T. R. (2013). Anticariogenic activity of Gnidia glauca (Fresen.) Gilg, Pothosscandens L. and Elaegnuskologa Schlecht. Journal of Applied Pharmaceutical Science, 3(03), 020–023.Google Scholar
  21. Teklehaymanot, T., & Giday, M. (2007). Ethnobotanical studies of medicinal plants used by people in Zege peninsula, North-Western Ethiopia. Journal of Ethnobiology and Ethnomedicine, 3, 12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Toshiyuki, M., Kazuhiro, H., & Masayuki, Y. (2001). Medicinal foodstuffs: XXIII structures of new oleanane-type triterpene oligoglycosides, basellasaponins A, B, C, and D, from the fresh aerial parts of Basella rubra L. Chemical & Pharmaceutical Bulletin (Tokyo), 49, 776–779.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Torankumar Sannabommaji
    • 1
  • Vadlapudi Kumar
    • 1
  • D. V. Poornima
    • 1
  • Hari Gajula
    • 1
  • J. Rajashekar
    • 1
  • T. Manjunatha
    • 1
  • Giridhara Basappa
    • 1
  1. 1.Department of BiochemistryDavangere UniversityDavangereIndia

Personalised recommendations