Ocimum gratissimum: A Review on Ethnomedicinal Properties, Phytochemical Constituents, and Pharmacological Profile

  • Chaudhary Priyanka
  • Sharma Shivika
  • Sharma Vikas


In the present chapter, an effort was made to compile the ethnomedicinal, phytochemical, and pharmacological properties of Ocimum gratissimum commonly known as Camphor basil or Ram Tulsi. It is a herbaceous plant that belongs to family Lamiaceae. The plant is about 1–2 feet long, and its leaves have cloves-like flavor that leads to its use in vegetables seasoning. This plant has immense therapeutic uses. O. gratissimum have chemopreventive, ant carcinogenic, free radical searching, radio defensive, and various other pharmacological uses. Plants like O. gratissimum deliver different bioactive constituents that are utilized generally as sustenance added substances, nourishment colorants, pharmaceuticals, pesticides, and aromas. Biotechnology acquired plant cell culture innovations and has been considered for long, an alluring option for the extraction and utilization of their important secondary metabolites. In vitro culture methods provide an attractive alternative for the protection of uncommon, debilitated, or imperiled therapeutic plants as well as effective means of their rapid clonal micropropagation of critical plants and also permit the creation of hereditarily steady and consistent source. The present chapter underlines the conventional utilizations and clinical possibilities of O. gratissimum.


Bioactives Ethnomedicinal Lamiaceae Micropropagation Ocimum gratissimum Pharmaceuticals 


  1. Abdulrahman, F. (1992). Studies in natural products: The Moraceae in African traditional medicine and management of psychiatry in Bornu state. M.Sc thesis, Department of Chemistry, University of Maiduguri.Google Scholar
  2. Adebolu, T. T., & Oladimeji, S. A. (2005). Antimicrobial activity of leaf extracts of Ocimum gratissimum on selected diarrhea causing Bacteria in southwestern Nigeria. African Journal of Biotechnology, 4, 682–684.CrossRefGoogle Scholar
  3. Afolabi, C., Akinmoladun, E. O., et al. (2007). Phytochemical constituent and antioxidant activity of extract from the leaves of O. gratissimum. Scientific Research and Essay, 2(5), 163–166.Google Scholar
  4. Ajitkumar, D., & Seeni, S. (1998). Rapid clonal multiplication through in vitro axillary shoot proliferation of Aegle marmelos (L.) Corr., a medicinal tree. Plant Cell Reports, 17, 422–426.CrossRefGoogle Scholar
  5. Akinmoladun, A. C., Ibukun, E. O., et al. (2007). Phytochemical constituent and antioxidant activity of extract from the leaves of Ocimum gratissimum. Scientific Research and Essay, 2, 163–166.Google Scholar
  6. Akinyemi, K. O., Mendie, U. E., Smith, S. T., et al. (2004). Screening of some medical plants for anti-salmonella activity. Journal of Herbal Pharmacotherapy, 5(1), 45–60.CrossRefGoogle Scholar
  7. Amar, K. F. (2000). Mechanism of hemostatic action of Ocimum gratissimum. Journal of Crude Drug Research, 28(4), 253–256.Google Scholar
  8. Anyamene, C. O., & Ezeadila, J. O. (2010). Antibacterial activity of water, ethanol and methanol extracts of Ocimum gratissimum, Vernonia amygdalina and Aframomum melegueta. Journal of Applied Sciences, 13(1), 8940–8948.Google Scholar
  9. Aprioku, J. S., & Obianime, A. W. (2008). Antioxidant activity of the aqueous crude extract of Ocimum gratissimum Linn. Leaf on Basal and Cadmium-induced Serum Levels of Phosphatases in Male Guinea-pigs. Journal of Applied Sciences and Environmental Management, 12, 33–39.Google Scholar
  10. Aziba, P. I., Bass, D., & Elegbe, Y. (1999). Pharmacological investigation of Ocimum gratissimum in rodents. Phytotherapy Research, 13, 427–429.CrossRefPubMedGoogle Scholar
  11. Balyan, S. S., & Pushpagandan, P. (1988). A studies on the taxonomic status and geographical distribution of the genus Ocimum. PAFAI Journal, 10(2), 13–19.Google Scholar
  12. Banu, L. A., & Bari, M. A. (2007). Protocol establishment for multiplication and regeneration of Ocimum sanctum Linn. An important medicinal plant with high religious value in Bangladesh. Journal of Plant Sciences, 2(5), 530–537.Google Scholar
  13. Begum, F., Amin, M. N., & Azad, M. A. K. (2000). In vitro clonal propagation of Holy Basil–Ocimum sanctum L. plant tissue culture and biotechnology (Vol. 10, pp. 31–37).Google Scholar
  14. Begum, F., Amin, N., & Azad, M. A. K. (2002). In vitro rapid clonal propagation of Ocimum basilicum L. Plant Tissue Culture, 12, 27–35.Google Scholar
  15. Bhat, K. G. (2003). Flora of Udupi (1st ed.). Indian Naturalist: Udupi.Google Scholar
  16. Bhat, S. R., Chandel, K. P. S., & Malik, S. K. (1995). Plant re-generation from various explants of cultivated Piper species. Plant Cell Reports, 14, 398–402.CrossRefPubMedGoogle Scholar
  17. Bushra, B. N. R., & Ganga, D. T. (2003). Antibacterial activity of selected sea weeds from Kovalam south west coast of India. Asian Journal of Microbiology, Biotechnology and Environmental Science (2003), 5(3), 319–322.Google Scholar
  18. Canj, R. E., & Poganaga, G. (1997). Antioxidant properties of phenolic compounds. Trends in Plant Science, 2, 152–159.CrossRefGoogle Scholar
  19. Caragay, A. B. (1992). Cancer preventive foods and ingredients. Journal of Food Technology, 56, 65–68.Google Scholar
  20. Chandrappa, S. M., Harsha, R., Dinesha, R., et al. (2010). Antibacterial activity of Coleus aromaticus leaves. International Journal of Pharmacy and Pharmaceutical Sciences, 2(3), 63–66.Google Scholar
  21. Chang, S. S., Matijasevic, O. B., Heish, O. A. L., et al. (1977). Natural antioxidant from rosemary and sage. Journal of Food Science, 42, 1102–1076.CrossRefGoogle Scholar
  22. Chitwood, D. J. (2003). Phytochemical based strategies for nematode control. Annual Review of Phytopathology, 40, 221–249.CrossRefGoogle Scholar
  23. Chiu, C. C., Huang, C. Y., Chen, T. Y., et al. (2012). Beneficial effects of ocimum gratissimum aqueous extract on rats with ccl4-induced acute liver injury. Evidence-Based Complementary and Alternative Medicine.
  24. Chopra, P., Meena, L. S., & Singh, Y. (2003). New drug targets for Mycobacterium tuberculosis. The India Journal of Medical Science, 57, 83–92.Google Scholar
  25. Corda, M. G., Giorgi, O., Longoni, B., et al. (1990). Decrease in the function of γ-aminobutyric acid coupled chloride channel produced by repeated administration of pentylenetetrazole in rats. Journal of Neurochemistry, 55, 1216–1221.CrossRefPubMedGoogle Scholar
  26. Dhawan, B. N., Patnik, G. R., Rastogy, R. A. T., Singh, K. K., & Tandol, T. S. (1977). Screening of Indian plants for biological activity. Indian Journal of Experimental Biology, 15(3), 208–219.PubMedGoogle Scholar
  27. Dode, L. B., Bobrowski, V. L., Braga, E. J. B., et al. (2003). In vitro propagation of Ocimum basilicum L. Maringa, 25, 435–437.Google Scholar
  28. Dornenburg, H., & Knorr, D. (1997). Challenges and opportunities for metabolite production from plant cell and tissue cultures. Food Technology, 51, 47–54.Google Scholar
  29. Dubey, N. K., Tiwari, T. N., Mandin, D., et al. (2000). Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamatechemotype). Fitoterapia, 71, 567–569.CrossRefPubMedGoogle Scholar
  30. Dubey, N. K., Kumar, R., & Tripati, P. (2004). Global promotion of herbal medicine: India’s opportunity. Current Science, 86, 37–41.Google Scholar
  31. Duman, A. D., Telci, I., Dayisoylu, K. S., et al. (2010). Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties. Natural Product Communications, 5, 969–974.PubMedGoogle Scholar
  32. Elujoba, AA (2005). Medicinal plants and herbal medicines in the management of opportunistic infections in people living with HIV/AIDS, Our experience so far. Guest lecture presented at the National scientific conference organized by the Nigerian Society of Pharmacognosy (NSP) at Zaria, Nigeria, pp. 11–12.Google Scholar
  33. Ezekwesili, C. N., Obiora, K. A., & Ugwu, O. P. (2004). Evaluation of anti-diarrhoeal property of crude aqueous extract of Ocimum gratissimum L. (Labiatae) in rats. Biokemistri, 16, 122–131.Google Scholar
  34. Fakae, B. B., Campbell, A. M., Barrett, J., et al. (2000). Inhibition of glutathione-S-transferases (GSTs) from parasitic nematodes by extracts from traditional Nigerian medicinal plants. Phytotherapy Research, 1148, 630–634.CrossRefGoogle Scholar
  35. Fowler, M. W., & Scragg, A. H. (1988). Natural products from higher plants and plant cell culture. In P. MSS, F. Mavituna, & J. M. Novais (Eds.), Plant cell biotechnology, NATO ASI series (Vol. 18, pp. 165–177). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  36. Freire, C. M., Marques, M. O., & Costa, M. (2006). Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. Journal of Ethnopharmacology, 105, 161–166.CrossRefPubMedGoogle Scholar
  37. Gupta, S. K., Prakash, J., & Srivastav, S. (2002). Validation of claim of Tulsi, Ocimum sanctum Linn as a medicinal plant. The Journal of Experimental Biology, 40, 65–773.Google Scholar
  38. Heywood, V. H. (1978). Flowering plants of the world (pp. 239–240). Oxford: Oxford University.Google Scholar
  39. Holets, F. B., Ueda-Nakamura, T., Filho, B. P. D., et al. (2003). Effect of essential oil of Ocimum gratissimum on the trypanosomatid Herpetomonas samuelpessoai. Acta Protozoologica, 42, 269–276.Google Scholar
  40. Hsu, F. L., Li, W. H., Yu, C. W., et al. (2012). In vivo antioxidant activities of essential oils and their constituents from leaves of the Taiwanese Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry, 60, 3092–3097.CrossRefPubMedGoogle Scholar
  41. Hu, C., & Wang, P. J. (1983). Meristem shoot tip and bud culture. In A. D. Evans, R. W. Sharp, V. P. Ammirato, & Y. Yamada (Eds.), Handbook of plant cell culture (pp. 177–122). New York: Macmillan.Google Scholar
  42. Ighodaro, O. M., & Ebuehi, O. A. (2009). Aqueous leaf extract of Ocimum gratissimum potentiates activities of plasma and hepatic antioxidant enzymes in rats. Nigerian Quarterly Journal of Hospital Medicine, 19, 106–109.PubMedGoogle Scholar
  43. Imelouane, B., Amhamdi, H., Wathelet, J. P., et al. (2009). Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from eastern Morocco. International Journal of Agriculture and Biology, 11, 205–208.Google Scholar
  44. Iwalokun, R. A., Gbenle, G., Adewole, T. A., et al. (2003). Effects of Ocimum gratissimum L. essential oil at sub-inhibitory concentration on virulent and multidrug resistance Shigella strains from Lagos, Nigeria. APMIS, 3, 477–482.CrossRefGoogle Scholar
  45. Janick, J. (Ed.). (1999). Perspectives on new crops and new uses. Alexandria: ASHS Press.Google Scholar
  46. Jedlickova, Z., Mottl, O., & Sery, V. (1992). Antibacterial properties of the Vietnamese cajeput oil and ocimum oil in combination with antibacterial agents. Journal of Hygiene, Epidemiology, Microbiology, and Immunology, 36, 303–309.PubMedGoogle Scholar
  47. Joshi, R. K. (2013). Chemical composition, in vitro antimicrobial and antioxidant activities of the essential oils of Ocimum gratissimum, O. Sanctum and their major constituents. Indian Journal of Pharmaceutical Sciences, 75(4), 457–462.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Junaid, A., Fatima, Z., Mujib, A., et al. (2010). Variations in vinblastine production at different stages of somatic embryogenesis, embryo and field grown plantlets of Catharanthus roseus L. (G) Don, as revealed by HPLC. In Vitro Cellular and Developmental Biology. Plant, 46(4), 348–353.CrossRefGoogle Scholar
  49. Kara, H., Karatas, F., Canatan, H., et al. (2005). Effects of exogenous metallothionein on acute cadmium toxicity in rats. Biological Trace Element Research, 104, 223–232.CrossRefPubMedGoogle Scholar
  50. Karthikeyan, K., Ravichandran, P., & Govindasamy, S. (1999). Chemopreventive effect of Ocimum sanctum on DMBA induced hamster buccal pouch carcinogenesis. Oral Oncology, 35, 112–119.CrossRefPubMedGoogle Scholar
  51. Kashyap, C. P., Kaur, R., Arya, V., et al. (2011). Therapeutic potency of Ocimum Kilimandscharicum Guerke – A review. Global Journal of Pharmaceutical, 5, 191–200.Google Scholar
  52. Keita, S. M., Vincent, C., Jean-Pierre, S., et al. (2000). Essential oil composition of Ocimum basilicum L, O. gratissimum L, and O. suave L in the Republic of Guinea. Flavour and Fragance Journal, 15, 339–341.CrossRefGoogle Scholar
  53. Khosroushahi, A. Y., Valizadeh, M., Ghasempour, A., et al. (2006). Improved taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biology International, 30, 262–269.CrossRefPubMedGoogle Scholar
  54. Koche, L. D. K., Kokate, P. S., Suradkar, S. S., et al. (2012). Preliminary phytochemistry and antibacterial activity of ethanolic extract of Ocimum gratissimum. Bioscience Discovery, 3, 20–24.Google Scholar
  55. Kpadonou, K. B. G., Ladekan, E. Y., & Kpoviessi, D. S. (2012). Chemical variation of essential oil constituents of Ocimum gratissimum L. from Benin, and impact on antimicrobial properties and toxicity against Artemiasalina leach. Chemistry & Biodiversity, 9, 139–150.Google Scholar
  56. Leal, P. F., Chaves, F., Celio, M., et al. (2006). Global yields, chemical compositions and antioxidant activities of clove basil (O. Gratissimum L). Journal of Food Process Engineering, 29, 547–559.CrossRefGoogle Scholar
  57. Lee MJ, Chen HM, Tzang BS (2011) Ocimum gratissimum aqueous extract protects H9c2 myocardiac cells from H2O2-induced cell apoptosis through akt signaling. Evid based complement Alternat med.
  58. Lemos, J. A., & Paula, J. R. (2005). Antifungal activity of Ocimum gratissimum towards dermatophytes. Mycoses, 48, 172–175.CrossRefPubMedGoogle Scholar
  59. Lemos, J. A., Passos, X. S., Fernandes, O. F. L., et al. (2005). Antifungal activity from Ocimum gratissimum L towards Cryptococcus Neoformans. Memorias do Insti-tuto Oswaldo Cruz, 100, 55–58.CrossRefGoogle Scholar
  60. Lima, E. O., Gompertz OF, Giesbrecht, A. M., et al. (1993). In vitro antifungal activity of essential oils obtained from officinal plants against dermatophytes. Mycoses, 36, 333–336.CrossRefPubMedGoogle Scholar
  61. Lopez, P., Sanchez, K., Batlle, R., et al. (2005). Solid and vapour phase anti-microbial activities of six essential oils susceptibility of selected food borne bacterial and fungal strains. Journal of Agricultural and Food Chemistry, 53(17), 6939–6946.CrossRefPubMedGoogle Scholar
  62. Mann J (2005) Secondary metabolism. 2ª Ed.: Oxfort university. New York (in press).Google Scholar
  63. Matasyoh, L. G., Matasyoh, J. C., Wachira, F. N., et al. (2007). Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in eastern Kenya. African Journal of Biotechnology, 6, 760–765.Google Scholar
  64. Mbata, T. I., & Saikia, A. (2005). Antibacterial activity of essential oil from Ocimum gratissimum L on Listeria monocytogenes. International Journal of Food and Safety, 5, 15–19.Google Scholar
  65. Mohammed, A., Tanko, Y., Okasha, M. A., et al. (2007). Effects of aqueous leaves extract of Ocimum gratissimum on blood glucose levels of streptozotocin induced diabetic wistar rats. African Journal of Biotechnology, 6, 2087–2090.CrossRefGoogle Scholar
  66. Mulabagal, V., & Tsay, H. S. (2004). Plant cell cultures – An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science, Engineering and Technology, 2(1), 29–48.Google Scholar
  67. Nadkarni, K. M. (1999). Indian materia medica (3rd ed.). Bombay: Popular Prakashan Pvt Ltd.Google Scholar
  68. Nakamura, C. V., Nakamura, T. U., Bando, E., et al. (1999). Antibacterial activity of Ocimum gratissimum essential oil. Memórias do Instituto Oswaldo Cruz, 94, 675–678.CrossRefPubMedGoogle Scholar
  69. Namdeo, A. G., Jadhav, T. S., Rai, P. K., et al. (2007). Precursor feeding for enhanced production of secondary metabolites. Pharmacognosy Reviews, 1, 227–231.Google Scholar
  70. Nasim, S. A., Dhir, B., Kapoor, R., et al. (2010). Alliin production in various tissues and organs of Allium sativum grown under normal and sulpur–Supplemented in vitro conditions. Plant Cell, Tissue and Organ Culture, 101, 59. Scholar
  71. Nwosu, M. O., & Okafor, J. (1995). Preliminary studies of the antifungal activities of some medicinal plants against Basidiobolus and some other pathogenic fungi. Mycoses, 8, 191–195.CrossRefGoogle Scholar
  72. Obianine, AW, Aprioku JS (2008) Ocimum gratissimum Linn reverses cadmium-induced toxicity in the testicular structure and function of the male guinea-pig. West Afr Soc. For Pharmacol Book of Abstracts. ETP.11, p. 17.Google Scholar
  73. Oduksoya, A. O., Ilori, O. O., Sofidiya, M. O., et al. (2005). Antioxidant activity of Nigerian dietary spices. EJEAF Che, 4, 1086–1093.Google Scholar
  74. Ogbo, E. M., & Oyibo, A. E. (2008). Effects of three plants extracts (Ocimum gratissimum Acalyphawilkesiana and Acalyphamacrostachya) on post harvest pathogen of Persea Americana. Journal of Medicinal Plants Research, 2(11), 311–314.Google Scholar
  75. Okoli, C. O., Ezike, A. C., Agwagah, O. C., et al. (2010). Anticonvulsant and anxiolytic evaluation of leaf extracts of Ocimum gratissimum, a culinary herb. Pharmacognosy Research, 2, 36–40.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Onajobi, F. D. (1986). Smooth muscle contracting lipid soluble principles in chromatographic fractions of Ocimum gratissimum. Journal of Ethnopharmacology, 18, 3–11.CrossRefPubMedGoogle Scholar
  77. Patnaik, J., & Debata, B. K. (1996). Micropropagation of Hemidesmus indicus (L.) through axillary bud culture. Plant Cell Reports, 15, 473–497.CrossRefGoogle Scholar
  78. Pessoa, L. M., Morais, S. M., Bevilaqua, C. M. L., et al. (2002). Antihelmintic activity of essential oil of Ocimum gratissimum Linn and eugenol against Haemoachus contortus. Veterinary Parasitology, 109, 59–63.CrossRefPubMedGoogle Scholar
  79. Philippe, S., Souaïbou, F., & Guy, A. (2012). Chemical composition and antifungal activity of essential oil of fresh leaves of Ocimum gratissimum from Benin against six mycotoxigenic fungi isolated from traditional cheese wagashi. International Research Journal of Biological Sciences, 1, 22–27.Google Scholar
  80. Prakash, E., Khan, P. S. S. V., Reddy, P. S., et al. (1999). Regeneration of plants from seed-derived callus of Hybanthus Enneaspermus L. Muell., a rare ethno-botanical herb. Plant Cell Reports, 18, 873–878.CrossRefGoogle Scholar
  81. Prashar, R., Kumar, A., & Banerjee, S. (1994). Chemopreventive action by an extract from Ocimum sanctum on mouse skin papillomagenesis and its enhancement of skin glutathione S-transferase activity and acid soluble sulfhydryl level. Anti- Cancer Drugs, 5, 567–572.CrossRefPubMedGoogle Scholar
  82. Purohit, S. D., Dave, A., & Kudka, G. (1994). Micropropagation of Safed Musli (Chlorophytum Borvivilanum) a rare Indian Medicinal herb. Plant Cell Tissue and Organ Culture, 39, 93–96.Google Scholar
  83. Pushpangadan, P., & Bradu, B. L. (1995). Basil. In K. L. Chadha & R. Gupta (Eds.), Advances in horticulture—Medicinal and aromatic plants (Vol. 11, pp. 627–657). New Delhi: Malhotra Publishing House.Google Scholar
  84. Rabelo, M., Souza, E. P., Soares, P. M. G., et al. (2003). Antinociceptive properties of the essential oil of Ocimum gratissimum L. (Labiatae) in ice. Brazilian Journal of Medical and Biological Research, 36, 521–524.CrossRefPubMedGoogle Scholar
  85. Rahimi, M., Farhadi, R., Balashahri, M. S., et al. (2012). Applications of new technologies in medicinal plant. International Journal of Plant Production, 3, 128–131.Google Scholar
  86. Ramachandra, R. S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20, 101–153.CrossRefGoogle Scholar
  87. Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6, 1720–1731.CrossRefGoogle Scholar
  88. Rao, P. S., Supresanna, P., & Kukda, G. (1996). Micropropagation of Safed musli (Chlorophytum borivilianum) a rare medicinal herb. Plant Cell, Tissue and Organ Culture, 39, 93–96.Google Scholar
  89. Recknagel, R. O. (1983). Carbon tetrachloride hepatotoxicity: Status quo and future prospects. Trends in Pharmacological Sciences, 4, 129–131.CrossRefGoogle Scholar
  90. Roitman, C., Roitman, I., & Azevedo, H. P. (1972). Growth of an insect Trypanosomatid at 37°C in a defined medium. The Journal of Protozoology, 19, 346–349.CrossRefPubMedGoogle Scholar
  91. Saha, S., Dey, T., & Ghosh, P. (2010). Micropropagation of Ocimum kilimandscharicum Guerke (Labiatae). Acta Biologica Cracoviensia Series Botanica, 52(2), 50–58.Google Scholar
  92. Sahoo, Y., & Chand, P. K. (1998). Micropropagation of Vitex negundo L., a woody aromatic medicinal shrub, through high-frequency axillary shoot proliferation. Plant Cell Reports, 18, 301–307.CrossRefGoogle Scholar
  93. Sahoo, Y., Pattnaik, S. K., & Chand, P. K. (1997). In vitro clonal propagation of an aromatic medicinal herb Ocimum basilicum L. (sweet basil) by axillary shoot proliferation. In Vitro Cellular & Developmental Biology. Plant, 33, 293–296.CrossRefGoogle Scholar
  94. Sasidharan, S., Chen, Y., & Saravanan, D. (2011). Extraction, isolation and characterization of bioactive compounds from plants extracts. African Journal of Traditional, Complementary and Alternative Medicines, 8(1), 1–10.Google Scholar
  95. Sen, P. (1993). Therapeutic potential of Tulsi: From experience to facts. Drug News Views, 1, 15–21.Google Scholar
  96. Shinde, A. N., Malpatha, N., & Fulzele, D. P. (2009). Enhanced production of phyto estrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnology and Bioprocess Engineering, 14, 288–294.CrossRefGoogle Scholar
  97. Simon, J. E., Quinn, J., & Murray, R. G. (1990). Basil: A source of essential oils. In J. Janick & J. E. Simon (Eds.), Advances in new crops (pp. 484–489). Portland: Timber Press.Google Scholar
  98. Singh, N. K., & Sehgal, C. B. (1999). Plant Growth Regulation, 29(3), 161–166.Google Scholar
  99. Sofowora, L. A. (1993). Medicinal plants and traditional medicine in Africa (pp. 55–71). Ibaban: Spectrum Books Ltd.Google Scholar
  100. Souza, M. C., Reis, A. P., Silva, W. D., et al. (1974). Mechanism of acquired immunity induced by “Leptomonaspessoai” against Trypanosomacruziin mice. The Journal of Protozoology, 21, 579–584.CrossRefGoogle Scholar
  101. Sulistiarini, D., Oyen, L. P. A., & Nguyen, X. D. (1999). Ocimum gratissimum L. In Plant resources of South-East Asia. Essential oils plants (Vol. 19, pp. 140–142). Bogor: Prosea Foundation.Google Scholar
  102. Tatsadjieu, N. L., Etoa, F. X., Mbofung, C. M. F., et al. (2008). Effect of Plectranthus glandulosus and Ocimum gratissimum essential oils on growth of Aspergillus flavus and aflatoxin B1 production. Tropicultura, 26(2), 78–83.Google Scholar
  103. Terezinha, J. F., Rafael, S. F., Lidiane, Y., et al. (2006). Antifungal activity of essential oil isolated from Ocimum gratissimum L. (eugenol chemotype) against phytopathogenic fungi. Brazilian Archives of Biology and Technology, 49, 867–871.CrossRefGoogle Scholar
  104. Thabrew, M. I., Hughes, R. D., & Mc Farlane, I. G. (1998). Antioxidant activity of Osbeckia aspera. Phytotherapy Research, 12, 288–290.CrossRefGoogle Scholar
  105. Verma, R. S., Bisht, P. S., Padalia, R. C., et al. (2011). Chemical composition and antibacterial activity of essential oil from two Ocimum spp grown in sub-tropical India during spring-summer cropping season. Asian Journal of Traditional Medicines, 6(5), 211–217.Google Scholar
  106. Victoria, C. G., Bryce, J., Fontaine, O., et al. (2000). Reducing deaths from diarrhoea through oral rehydration therapy. Bulletin of the World Health Organization, 78, 1246–1255.Google Scholar
  107. Vieira, R. F., Grayer, R. J., Paton, A., et al. (2001). Genetic diversity of Ocimum gratissimum L based on volatile oil constituents, flavonoids and RAPD markers. Biochemical Systematics and Ecology, 29, 287–204.CrossRefPubMedGoogle Scholar
  108. Vincent, K. A., Mathew, K. M., & Hariharan, M. (1992). Micro-propagation of Kaemferi agalanga L—A medicinal plant. Plant Cell, Tissue and Organ Culture, 28, 229–230.CrossRefGoogle Scholar
  109. WHO. (2005). National policy on traditional medicine and regulation of herbal medicines: Report of a WHO global survey. Geneva: World Health Organization.Google Scholar
  110. Zarate, R., El Jaber-Vazdekis, N., Cequier-Sanchez, E., et al. (2003). Biotechnology for the production of plant natural products. Studies Nat Prod Chem, 34, 308–392.Google Scholar
  111. Zhong, J. J. (2001). Biochemical engineering of the production of plant specific secondary metabolites by cell suspension cultures. Advances in Biochemical Engineering/Biotechnology, 72, 1–26.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Chaudhary Priyanka
    • 1
  • Sharma Shivika
    • 2
  • Sharma Vikas
    • 3
  1. 1.Department of Life Sciences, Arni School of Basic SciencesArni UniversityKathgarhIndia
  2. 2.Department of Chemistry and Chemical SciencesCentral University of Himachal PradeshTAB- Shahpur, DharamshalaIndia
  3. 3.Department of BiotechnologyDAV UniversityJalandharIndia

Personalised recommendations