Advertisement

Hairy Root Culture for In Vitro Production of Secondary Metabolites: A Promising Biotechnological Approach

  • Ravi Shankar Singh
  • Tirthartha Chattopadhyay
  • Dharamsheela Thakur
  • Nitish Kumar
  • Tribhuwan Kumar
  • Prabhash Kumar Singh
Chapter

Abstract

Hairy root culture (HRC)-based in vitro production system has become a promising biotechnological approach in recent years. The hairy root formation is the result of Agrobacterium rhizogenes-induced pathogenesis in plants, characterized by high growth rate, growth in hormone-free media besides genetic stability. These roots can imitate intact plants in the production of secondary metabolites and also amenable to upscaling in the bioreactor. HRCs are being harnessed as one of the methods of choice in tissue culture for high yield of valuable secondary metabolites of medicinal and other commercial importance. Many secondary metabolites, which were earlier extracted from wild plants from their natural habitat, are now being produced using plant cell cultures including HRCs. This book chapter is focussed mainly on the development of hairy root culture in different medicinal plants and its application, challenges, and prospects in the production of valuable secondary metabolites.

Keywords

Hairy root culture Agrobacterium rhizogenes Secondary metabolites 

References

  1. Abbott, J. A., Medina-Bolivar, F., Martin, E. M., Engelberth, A. S., Villagarcia, H., Clausen, E. C., & Carrier, D. J. (2010). Purification of resveratrol, arachidin-1, and arachidin-3 from hairy root cultures of peanut (Arachis hypogaea) and determination of their antioxidant activity and cytotoxicity. Biotechnology Progress, 26, 1344–1351.PubMedCrossRefGoogle Scholar
  2. Amdoun, R., Khelifi, L., Khelifi-Slaoui, M., Amroune, S., Asch, M., Assaf-Ducrocq, C., & Gontier, E. (2010). Optimization of the culture medium composition to improve the production of hyoscyamine in elicited Datura stramonium L. hairy roots using the response surface methodology (RSM). International Journal of Molecular Sciences, 11, 4726–4740.CrossRefGoogle Scholar
  3. Banerjee, S., Singh, S., & Ur Rahman, L. (2012). Biotransformation studies using hairy root cultures – A review. Biotechnology Advances, 30(3), 461–468.PubMedCrossRefGoogle Scholar
  4. Bapat, V. A., & Ganapathi, T. R. (2005). Hairy roots –A novel source for plant products and improvement. National Academy Science Letters, 28, 61–69.Google Scholar
  5. Baskaran, P., & Jayabalan, N. (2009). Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia. Biotechnology Letters, 31, 1073–1077.PubMedCrossRefGoogle Scholar
  6. Bauer, N., Kiseljak, D., & Jelaska, S. (2009). The effect of yeast extract and methyl jasmonate on rosmarinic acid accumulation in Coleus blumei hairy roots. Biologia Plantarum, 53, 650–656.CrossRefGoogle Scholar
  7. Bayindir, U., Alfermann, A., & Fuss, E. (2008). Hinokinin biosynthesis in Linum corymbulosum Reichenb. The Plant Journal, 55, 810–820.PubMedCrossRefGoogle Scholar
  8. Bettini, P., Michelotti, S., Bindi, D., Giannini, R., Capuana, M., & Buiatti, M. (2003). Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum mill.). Theoretical and Applied Genetics, 107, 831–836.PubMedCrossRefGoogle Scholar
  9. Cardarelli, M., Mariotti, D., Pomponi, M., Spanò, L., Capone, I., & Costantino, P. (1987a). Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Molecular & General Genetics, 209, 475–480.CrossRefGoogle Scholar
  10. Cardarelli, M., Spanò, L., Mariotti, D., Mauro, L., van Sluys, M. A., & Costantino, P. (1987b). The role of auxin in hairy root induction. Molecular & General Genetics, 208, 457–463.CrossRefGoogle Scholar
  11. Cardillo, A. B., Otalvaro, A. A. M., Busto, V. D., Talou, J. R., Velasquez, L. M. E., & Giulietti, A. M. (2010). Scopolamine, anisodamine and hyoscya- mine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochemistry, 45, 1577–1581.CrossRefGoogle Scholar
  12. Charlwood, B. V., & Charlwood, K. A. (1991). Terpenoid production in plant cell culture. In J. B. Harborne & F. A. Tomas-Barberan (Eds.), Ecological chemistry and biochemistry of plant terpenoids (pp. 95–132). Oxford: Clarendon Press.Google Scholar
  13. Chaudhury, A., & Pal, M. (2010). Induction of shikonin production in hairy root cultures of Arnebia hispididdima via Agrobacterium rhizogenes-mediated genetic transformation. Journal of Crop Science and Biotechnology, 13, 99–106.CrossRefGoogle Scholar
  14. Chilton, M. D., Tepfer, D. A., Petit, A., David, C., Casse-Delbart, F., & Tempe, J. (1982). Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature, 295, 432–434.CrossRefGoogle Scholar
  15. Choi, D. W., Jung, J. D., HaY, P. H. W., et al. (2005). Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports, 23, 557–566.PubMedCrossRefGoogle Scholar
  16. Christey, M. C. (2001). Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cellular & Developmental Biology Plant, 37, 687–700.CrossRefGoogle Scholar
  17. Costantino, P., Spano, L., Pomponi, M., Benvenuto, E., & Ancora, G. (1984). The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis to the progeny of hairy root plants. Journal of Molecular and Applied Genetics, 2, 465–470.PubMedGoogle Scholar
  18. De Boer, K., Dalton, H., Edward, F., & Hamill, J. (2011). RNAi mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry, 72, 344–355.CrossRefGoogle Scholar
  19. Dehio, C., & Schell, J. (1993). Stable expression of a single-copy rolA gene in transgenic Arabidopsis thaliana plants allows an exhaustive mutagenic analysis of the transgene-associated phenotype. Molecular & General Genetics, 241, 359–366.Google Scholar
  20. Dehio, C., Grossmann, K., Schell, J., & Schmulling, T. (1993). Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Molecular Biology, 23, 1199–1210.PubMedCrossRefGoogle Scholar
  21. Drobot, K. O., Matvieieva, N. A., Ostapchuk, A. M., Kharkhota, M. A., & Duplij, V. P. (2017). Study of artemisinin and sugar accumulation in Artemisia vulgaris and Artemisia dracunculus “hairy” root cultures. Preparative Biochemistry & Biotechnology, 23, 1–6.Google Scholar
  22. Durand-Tardif, M., Broglie, R., Slightom, J., & Tepfer, D. (1985). Structure and expression of Ri T-DNA from Agrobacterium rhizogenes in Nicotiana tabacum. Journal of Molecular Biology, 186, 557–564.PubMedCrossRefGoogle Scholar
  23. Eapen, S., & Mitra, R. (2001). Plant hairy root cultures: Prospects and limitations. Proceedings of Indian National Sciences Academy, B67(3&4), 107–120.Google Scholar
  24. Estramareix, C., Ratet, P., Boulanger, F., & Richaud, F. (1986). Multiple mutations in the transferred regions of the Agrobacterium rhizogenes root-inducing plasmids. Plasmid, 15, 245.PubMedCrossRefGoogle Scholar
  25. Estruch, J. J., Schell, J., & Spena, A. (1991a). The protein encoded by rolB plant oncogene hydrolyses indoleglucosides. The EMBO Journal, 10, 3125–3128.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Estruch, J. J., Chriqui, D., Grossmann, K., Schell, J., & Spena, A. (1991b). The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. The EMBO Journal, 10, 2889–2895.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Estruch, J. J., Parets-Soler, A., Schmülling, T., & Spena, A. (1991c). Cytosolic localization in transgenic plants of the rolC peptide from Agrobacterium rhizogenes. Plant Molecular Biology, 17, 547–550.PubMedCrossRefGoogle Scholar
  28. Flores, H. E., Vivanco, J. M., & Loyola-Vargas, V. M. (1999). Radicle biochemistry: The biology of root-specific metabolism. Trends in Plant Science, 4, 220–226.PubMedCrossRefGoogle Scholar
  29. Gai, Q.-Y., Jiao, J., Luo, M., Wei, Z.-F., Zu, Y.-G., Ma, W., et al. (2015). Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Isatis tinctoria L. for the efficient production of flavonoids and evaluation of antioxidant activities. PLoS One, 10(3), e0119022.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gangopadhyay, M., Dewanjee, S., & Bhattacharya, S. (2011). Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. Journal of Bioscience and Bioengineering, 111, 706–710.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gao, W., Hillwig, M., Huang, L., Cui, G., et al. (2009). A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Organic Letters, 11, 5170–5173.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Georgiev, V. G., Weber, J., Kneschke, E. M., Denev, P. N., Bley, T., & Pavlov, A. I. (2010). Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of the red beet root Beta vulgaris cv. Detroit dark red. Plant Foods for Human Nutrition, 65, 105–111.PubMedCrossRefGoogle Scholar
  33. Georgiev, M. I., Agostini, E., Ludwig-Müller, J., & Xu, J. (2012). Genetically transformed roots: From plant disease to biotechnological resource. Trends in Biotechnology, 30(10), 528–537.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Giri, A., & Narasu, M. L. (2000). Transgene hairy roots: Recent trends and application. Biotechnology Advances, 18, 1–22.PubMedCrossRefGoogle Scholar
  35. Goklany, S., Loring, R. H., Glick, J., & Lee-Parsons, C. W. T. (2010). Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnology Progress, 25, 1289–1296.CrossRefGoogle Scholar
  36. Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., & Gantet, P. (2006). Harnessing the potential of hairy roots: Dawn of a new era. Trends in Biotechnology, 24(9), 403–409.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Häkkinen, S. T., Moyano, E., Cusidó, R. M., & Oksman-Caldentey, K. M. (2016). Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Frontiers in Plant Science, 7, 1486.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hildebrand, E. (1934). Life history of the hairy-root organism in relation to its pathogenesis on nursery apple trees. Journal of Agricultural Research, 48, 857–885.Google Scholar
  39. Hu, Z. B., & Du, M. (2006). Hairy root and its application in plant genetic engineering. Journal of Integrative Plant Biology, 48(2), 121–127.CrossRefGoogle Scholar
  40. Jaber-Vazdekis, N., Barres, M. L., Ravelo, A. G., & Zarate, R. (2008). Effects of elicitors on tropane alkaloids and gene expression in Atropa baetica transgenic hairy roots. Journal of Natural Products, 71, 2026–2031.PubMedCrossRefGoogle Scholar
  41. Jiang, Y. N., Wang, B., Li, H., Yao, L. M., et al. (2010). Flavonoid production is effectively regulated by RNAi interference of two flavone synthase genes from Glycine max. J Plant Biol, 53, 425–432.Google Scholar
  42. Jung, J. D., Park, H. W., Hahn, Y., Hur, C. G., et al. (2003). Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports, 22, 224–230.PubMedCrossRefGoogle Scholar
  43. Kai, G., Xu, H., Zhou, C., Liao, P., Xiao, J., Luo, X., You, L., & Zhang, L. (2011). Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metabolic Engineering, 13, 319–327.PubMedCrossRefGoogle Scholar
  44. Kai, G., Yang, S., Zhang, Y., Luo, X., et al. (2012). Effects of different elicitors on yield of tropane alkaloids in hairy roots of Anisodus acutangulus. Molecular Biology Reports, 39, 1721–1729.PubMedCrossRefGoogle Scholar
  45. Kajikawa, M., Hirai, N., & Hashimoto, T. (2009). APIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Molecular Biology, 69, 287–298.PubMedCrossRefGoogle Scholar
  46. Kastell, A. (2009). Induction of hairy root culture by Agrobacterium rhizogenes in different Brassica plants impact of phytohormones and precursors in the glucosinolates accumulation. Diploma thesis (Diplomarbeit in german), Berlin University of Technology.Google Scholar
  47. Kim, Y. J., Wyslouzil, B. E., & Weathers, P. J. (2002). Invited review: Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cellular & Developmental Biology Plant, 38, 1–10.CrossRefGoogle Scholar
  48. Kim, O. T., Bang, K. H., Kim, Y. C., Hyun, D. Y., et al. (2009). Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell Tissue and Organ Culture, 98, 25–33.CrossRefGoogle Scholar
  49. Kim, O. T., Kim, S. H., Ohyama, K., Muranaka, T., et al. (2010a). Upregulation of phytosterol and triterpene biosynthesis in Centella asiatica hairy roots over expressed ginseng farnesyl diphosphate synthase. Plant Cell Reports, 29, 403–411.PubMedCrossRefGoogle Scholar
  50. Kim, Y. K., Xu, H., Park, W. T., Park, N. I., Lee, S. Y., & Park, S. U. (2010b). Genetic transformation of buckwheat (Fagopyrum esculentum M.) with Agrobacterium rhizogenes and production of rutin in trans- formed root cultures. Australian Journal of Crop Science, 4, 485–490.Google Scholar
  51. Kittipongpatana, N., Hock, R. S., & Porter, J. R. (1998). Production of solasodine by hairy root, callus, and cell suspension cultures of Solanum aviculare Forst. Plant Cell Tissue and Organ Culture, 52, 133–143.CrossRefGoogle Scholar
  52. Kuzma, L., Bruchajzer, E., & Wysokinska, H. (2009). Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme and Microbial Technology, 44, 406–410.CrossRefGoogle Scholar
  53. Levesque, H., Delepelaire, P., Rouze, P., Slightom, J., & Tepfer, D. (1988). Common evolutionary origin of the central portions of the Ri TLDNA of Agrobacterium rhizogenes and the Ti T-DNAs of Agrobacterium tumefaciens. Plant Molecular Biology, 11, 731–744.PubMedCrossRefGoogle Scholar
  54. Ling, A. P. K., Ong, S. L., & Sobri, H. (2011). Strategies in enhancing secondary metabolites production in plant cell cultures. Medicinal and Aromatic Plant Science and Biotechnology, 5(2), 94–101.Google Scholar
  55. Liu, C. Z., Wang, Y. C., Zhao, B., Guo, C., Ouyang, F., Ye, H. C., & Li, G. F. (1999). Development of a nutrient mist bioreactor for growth of hairy roots. In Vitro Cellular & Developmental Biology. Plant, 35, 271–274.CrossRefGoogle Scholar
  56. Ludwig-Muller, J., Georgiev, M., & Bley, T. (2008). Metabolite and hormonal status of hairy root cultures of Devail’s claw (Harpagophytum procumbens) in flaks and in a bubble column bioreactor. Process Biochemistry, 43, 15–23.CrossRefGoogle Scholar
  57. Martin-Tanguy, J. (2001). Metabolism and function of polyamines in plants: Recent development (new approaches). Plant Growth Regulation, 34, 135–148.CrossRefGoogle Scholar
  58. Martin-Tanguy, J., Sun, Y., Burtin, D., Vernoy, R., Rossin, N., & Tepfer, D. (1996). Attenuation of the phenotype caused by the root-inducing, left hand, transferred DNA and its rolA gene (correlations with changes in polyamine metabolism and DNA methylation). Plant Physiology, 111, 259–267.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Mathur, A., Gangwar, A., Mathur, A. K., Verma, P., Uniyal, G. C., & Lal, R. K. (2010). Growth kinetics and ginsenosides production in trans- formed hairy roots of American ginseng-Panax quinquefolium L. Biotechnology Letters, 32, 457–461.PubMedCrossRefGoogle Scholar
  60. Maurel, C., Barbier-Brygoo, H., Spena, A., Tempe, J., & Guern, J. (1991). Single rol genes from the Agrobacterium rhizogenes T(L)-DNA alter some of the cellular responses to auxin in Nicotianatabacum. Plant Physiology, 97, 212–216.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Maurel, C., Leblanc, N., Barbier-Brygoo, H., Perrot-Rechenmann, C., Bouvier-Durand, M., & Guern, J. (1994). Alterations of auxin perception in rolB-transformed tobacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiology, 105, 1209–1215.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Mauro, M. L., Trovato, M., Paolis, A. D., Gallelli, A., Costantino, P., & Altamura, M. M. (1996). The plant oncogene rolD stimulates flowering in transgenic tobacco plants. Developmental Biology, 180, 693–700.PubMedCrossRefGoogle Scholar
  63. Mehrotra, S., Rahman, L. U., & Kukreja, A. K. (2010). An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering. Biotechnology and Applied Biochemistry, 56(4), 161–172.PubMedCrossRefGoogle Scholar
  64. Meyer, A., Tempe, J., & Costantino, P. (2000). Hairy root: A molecular overview functional analysis of Agrobacterium rhizogenes T-DNA genes. In G. Stacey & N. Keen (Eds.), Plant-microbe interactions (Vol. 5, pp. 93–139). St. Paul: APS Press.Google Scholar
  65. Min, J. Y., Jung, H. Y., Kang, S. M., Kim, Y. D., Kang, Y. M., Park, D. J., Prasad, D. T., & Choi, M. S. (2007). Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresource Technology, 98, 1748–1753.PubMedCrossRefGoogle Scholar
  66. Moharrami, F., Hosseini, B., Sharafi, A., & Farjaminezhad, M. (2017). Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cellular & Developmental Biology Plant, 53(2), 104–111.CrossRefGoogle Scholar
  67. Moore, L., Warren, G., & Strobel, G. (1979). Involvement of a plasmid in the hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid, 2, 617–626.PubMedCrossRefGoogle Scholar
  68. Moriguchi, K., Maeda, Y., Satou, M., Hardayani, N. S., Kataoka, M., Tanaka, N., & Yoshida, K. (2001). The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. Journal of Molecular Biology, 307, 771–784.PubMedCrossRefGoogle Scholar
  69. Moyano, E., Jouhikainen, K., Tammela, P., Palazoan, J., et al. (2003). Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. Journal of Experimental Botany, 54, 203–211.PubMedCrossRefGoogle Scholar
  70. Murthy, H. N., Dijkstra, C., Anthony, P., White, D. A., Davey, M. R., Power, J. B., Hahn, E. J., & Paek, K. Y. (2008). Establishment of Withania somnifera hairy root cultures for the production of withanolide A. Journal of Integrative Plant Biology, 50(8), 975–981.PubMedCrossRefGoogle Scholar
  71. Nandagopal, K., Halder, M., Dash, B., Nayak, S., & Jha, S. (2017). Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone. Current Medicinal Chemistry.  https://doi.org/10.2174/0929867324666170404145656.
  72. Nilsson, O., & Olsson, O. (1997). Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiologia Plantarum, 100, 463–473.CrossRefGoogle Scholar
  73. Nilsson, O., Crozier, A., Schmülling, T., Sandberg, G., & Olsson, O. (1993a). Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes rolB gene. The Plant Journal, 3, 681–689.CrossRefGoogle Scholar
  74. Nilsson, O., Moritz, T., Imbault, N., Sandberg, G., & Olsson, O. (1993b). Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA. Plant Physiology, 102, 363–371.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Okuzumi, K., Hara, N., Fujimoto, Y., Yamada, J., et al. (2003). Biosynthesis of phytoecdysteroids in Ajuga hairy roots: Clerosterol as a precursor of cyasterone, isocyasterone and 29-norcyasterone. Tetrahedron Letters, 44, 323–326.CrossRefGoogle Scholar
  76. Pang, Y., Peel, G. J., Sharma, S. B., Tang, Y., et al. (2008). A transcript profiling approach reveals an epicatechin-specific glucosyl transferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 105, 14210–14215.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Phelep, M., Petit, A., Martin, L., Duhoux, E., & Tempe, J. (1991). Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Bio-Tech, 9, 461–466.Google Scholar
  78. Prinsen, E., Chriqui, D., Vilaine, F., Tepfer, M., & Van Onckelen, H. (1994). Endogenous phytohormones in tobacco plants transformed with Agrobacterium rhizogenesp Ri TL-DNA genes. Plant Physiology, 144, 80–85.CrossRefGoogle Scholar
  79. Riker, A. J., Banfield, W. M., Wright, W. H., Keitt, G. W., & Sagen, H. E. (1930). Studies on infectious hairy root of nursery-apple tree. Journal of Agricultural Research, 41, 507–540.Google Scholar
  80. Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. Journal of Biotechnology, 128(2), 281–289.PubMedCrossRefGoogle Scholar
  81. Schmulling, T., Schell, J., & Spena, A. (1988). Single genes from Agrobacterium rhizogenes influence plant development. The EMBO Journal, 7, 2621–2629.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Schmülling, T., Fladung, M., Grossmann, K., & Schell, J. (1993). Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. The Plant Journal, 3, 371–382.CrossRefGoogle Scholar
  83. Sevon, N., & Oksman-Caldentey, K. M. (2002). Agrobacterium rhizogenes mediated transformation: Root cultures as a source of alkaloids. Planta Medica, 68, 859–868.PubMedCrossRefGoogle Scholar
  84. Shen, W. H., Davioud, E., David, C., Barbier-Brygoo, H., Tempe, J., & Guern, J. (1990). High sensitivity to auxin is a common feature of hairy root. Plant Physiology, 94, 554–560.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shinde, A. N., Malpathak, N., & Fulzele, D. (2010). Impact of nutrient components on production of the phytoestrogens daidzein and genistein by hairy roots of Psoralea corylifolia. Journal of Natural Medicines, 64, 346–353.PubMedCrossRefGoogle Scholar
  86. Singh, R. S., Gara, R. K., Bhardwaj, P. K., Kaachra, A., Malik, S., Kumar, R., Sharma, M., Ahuja, P. S., & Kumar, S. (2010). Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston]. BMC Molecular Biology, 11, 88.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sircar, D., & Mitra, A. (2009). Accumulation of p-hydroxybenzoic acid in hairy roots of Daucus carota: Confirming biosynthetic steps through feeding of inhibitors and precursors. Journal of Plant Physiology, 166, 1370–1380.PubMedCrossRefGoogle Scholar
  88. Sirikantaramas, S., Sudo, H., Asano, T., Yamazaki, M., et al. (2007). Transport of camptothecin in hairy roots of Ophiorrhiza pumila. Phytochemistry, 68, 2881–2886.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sivakumar, G. (2006). Bioreactor technology: A novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnology Journal, 1(12), 1419–1427.PubMedCrossRefGoogle Scholar
  90. Skorupinska-Tudek, K., Poznanski, J., Wojcik, J., Bienkowski, T., et al. (2008). Contribution of the mevalonate and methyl erythritol phosphate pathways to the biosynthesis of dolichols in plants. The Journal of Biological Chemistry, 283, 21024–21035.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Slightom, J. L., Durand-Tardif, M., Jouanin, L., & Tepfer, D. (1986). Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenesagropine type plasmid. Identification of open reading frames. The Journal of Biological Chemistry, 261, 108–121.PubMedGoogle Scholar
  92. Spanò, L., Pomponi, M., Costantino, P., Van Slogteren, G. M. S., & Tempé, J. (1982). Identification of T-DNA in the root-inducing plasmid of the agropine-type Agrobacterium rhizogenes 1855. Plant Molecular Biology, 1, 291–300.PubMedCrossRefGoogle Scholar
  93. Spena, A., Schmülling, T., Koncz, C., & Schell, J. (1987). Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants. The EMBO Journal, 6(3), 891–3899.Google Scholar
  94. Srivastava, S., & Srivastava, A. K. (2007). Hairy root culture for mass-production of high-value secondary metabolites. Critical Reviews in Biotechnology, 27(1), 29–43.PubMedCrossRefGoogle Scholar
  95. Srivastava, M., Sharma, S., & Misra, P. (2016). Elicitation based enhancement of secondary metabolites in Rauwolfia serpentine and Solanum khasianum hairy root cultures. Pharmacognosy Magazine, 12(Suppl 3), S315–S320.PubMedPubMedCentralGoogle Scholar
  96. Sun, L.-Y., Monneuse, M.-O., Martin-Tanguy, J., & Tepfer, D. (1991). Changes in flowering and accumulation of polyamines and hydroxycinnamic acid-polyamine conjugates in tobacco plants transformed by the rolA locus from the Ri TL-DNA of Agrobacterium rhizogenes. Plant Science, 80, 145–146.CrossRefGoogle Scholar
  97. Suzuki, M. (1989). SPXX, a frequent sequence motif in gene regulatory proteins. Journal of Molecular Biology, 207(1):61–84.Google Scholar
  98. Syklowska-Baranek, K., Pietrosiuk, A., Kokoszka, A., & Furmanowa, M. (2009). Enhancement of taxane production in hairy root culture of Taxus x media var. Hicksii. Journal of Plant Physiology, 166, 1950–1954.PubMedCrossRefGoogle Scholar
  99. Tepfer, D. (1990). Genetic transformation using Agrobacterium rhizogenes. Physiologia Plantarum, 79, 140–146.CrossRefGoogle Scholar
  100. Terrier, N., Torregrosa, L., Ageorges, A., Vialet, S., et al. (2009). Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. Plant Physiology, 149, 1028–1041.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tisserant, L. P., Aziz, A., Jullian, N., Jeandet, P., Clément, C., Courot, E., & Boitel-Conti, M. (2016). Enhanced stilbene production and excretion in Vitis vinifera cv pinot noir hairy root cultures. Molecules, 21(12), pii: E1703.CrossRefGoogle Scholar
  102. Trovato, M., Maras, B., Linhares, F., & Constantino, P. (2001). The plant oncogene rolD encodes a functional ornithine cyclodeaminase. Proceedings of the National Academy of Sciences of the United States of America, 98, 13449–13453.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Udomsom, N., Rai, A., Suzuki, H., Okuyama, J., Imai, R., Mori, T., Nakabayashi, R., Saito, K., & Yamazaki, M. (2016). Function of AP2/ERF transcription factors involved in the regulation of specialized metabolism in Ophiorrhiza pumila revealed by transcriptomics and metabolomics. Frontiers in Plant Science, 7, 1861.PubMedPubMedCentralCrossRefGoogle Scholar
  104. van Altvorst, A. C., Bino, R. J., van Dijk, A. J., Lamers, A. M. J., Lindhout, W. H., van der Mark, F., & Dons, J. J. M. (1992). Effects of the introduction of Agrobacterium rhizogenesrol genes on tomato plant and flower development. Plant Science, 83, 77–85.CrossRefGoogle Scholar
  105. Veena, V., & Taylor, C. G. (2007). Agrobacterium rhizogenes: Recent developments and promising applications. In Vitro Cellular & Developmental Biology. Plant, 43, 383–403.CrossRefGoogle Scholar
  106. Verma, P. C., Trived, I., Singh, H., Shukla, A. K., Kumar, M., Upadhyay, S. K., Pandey, P., Hans, A. L., & Singh, P. K. (2009). Efficient production of gossypol from hairy root cultures of cotton (Gossypium hirsutum L.). Current Pharmaceutical Biotechnology, 10, 691–700.PubMedCrossRefGoogle Scholar
  107. Vilaine, F., Charbonnier, C., & Casse-Delbart, F. (1987). Further insight concerning the TL-region of the Ri plasmid of Agrobacterium rhizogenes strain A4: Transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Molecular & General Genetics, 210, 111–115.CrossRefGoogle Scholar
  108. Wang, C. T., Liu, H., Gao, X. S., & Zhang, H. X. (2010). Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Reports, 29, 887–894.PubMedCrossRefGoogle Scholar
  109. White, F. F., & Nester, E. W. (1980). Hairy root: Plasmid encodes virulence traits in Agrobacterium rhizogenes. Journal of Bacteriology, 141, 1134–1141.PubMedPubMedCentralGoogle Scholar
  110. White, F. F., Taylor, B. H., Huffman, G. A., Gordon, M. P., & Nester, E. W. (1985). Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. Journal of Bacteriology, 164, 33–44.PubMedPubMedCentralGoogle Scholar
  111. Wielanek, M., & Urbanek, H. (2006). Enhanced glucotropaeolin production in hairy root cultures of Tropaeolum majus(L.) by combining elicitation and precursor feeding. Plant Cell, Tissue and Organ Culture, 86, 177–186.CrossRefGoogle Scholar
  112. Xiao, Y., Gao, S., Peng, D., Chen, J., et al. (2010). Lithospermic acid B is more responsive to silver ions (ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Bioscience Reports, 30, 33–40.CrossRefGoogle Scholar
  113. Yadav, N. S., Van der Leyden, J., Bennett, D. R., Barnes, W. M., & Chilton, M.-D. (1982). Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proceedings of the National Academy of Sciences of the United States of America, 79, 6322–6326.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yamazaki, Y., Kitajima, M., Arita, M., Takayama, H., et al. (2004). Biosynthesis of camptothecin. In silico and in vivo tracer study from [1–13C] glucose. Plant Physiology, 134, 161–170.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yan, Q., Shi, M., Ng, J., & Wu, J. Y. (2006). Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. Plant Science, 170, 853–858.CrossRefGoogle Scholar
  116. Yan, Q., Wu, J., & Liu, R. (2011). Modeling of tanshinone synthesis and phase distribution under the combined effect of elicitation and in situ adsorption in Salvia miltiorrhiza hairy root cultures. Biotechnology Letters, 33, 813–819.PubMedCrossRefGoogle Scholar
  117. Yang, D., Ma, P., Liang, X., Liang, Z., et al. (2012). Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salviacastanea Diel f. tomentosa Stib. PLoS One, 7, e29678.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Yi, J., Derynck, M. R., Li, X., Telmer, P., et al. (2010). A single repeat Myb transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. The Plant Journal, 62, 1019–1034.PubMedGoogle Scholar
  119. Zang, Y. X., Kim, D. H., Park, B. S., & Hong, S. B. (2009). Metabolic engineering of indole glucosinolates in chinese cabbage hairy roots express- ing Arabidopsis CYP79B2, CYP79B3, and CYP83B1. Biotechnology and Bioprocess Engineering, 14, 467–473.CrossRefGoogle Scholar
  120. Zhai, D. D., & Zhong, J. J. (2010). Simultaneous analysis of three bioactive compounds in Artemisia annua hairy root cultures by reversed-phase high-performance liquid chromatography-diode array detector. Phytochemical Analysis, 21, 524–530.PubMedCrossRefGoogle Scholar
  121. Zhang, H. C., Liu, J. M., Lu, H. Y., & Gao, S. L. (2009). Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Reports, 28, 1205–1213.PubMedCrossRefGoogle Scholar
  122. Zhang, H. L., Xue, S. H., Pu, F., Tiwari, R. K., & Wang, X. Y. (2010). Establishment of hairy root lines and analysis of gentiopicroside in the medicinal plant Gentiana macrophylla. Russian Journal of Plant Physiology, 57, 110–117.CrossRefGoogle Scholar
  123. Zhao, B. (2014). Alkaloid production by hairy root cultures. All graduate theses and dissertations. Paper 3884. Utah State University Logan Utah.Google Scholar
  124. Zhou, M. L., Zhu, X. M., Shao, J. R., Wu, Y. M., et al. (2010). Transcriptional response of the catharanthine biosynthesis pathway to methyl jasmonate/nitric oxide elicitation in Catharanthus roseus hairy root culture. Applied Microbiology and Biotechnology, 88, 737–750.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ravi Shankar Singh
    • 1
  • Tirthartha Chattopadhyay
    • 1
  • Dharamsheela Thakur
    • 2
  • Nitish Kumar
    • 3
  • Tribhuwan Kumar
    • 4
  • Prabhash Kumar Singh
    • 1
  1. 1.Depeartment of Plant Breeding and GeneticsBihar Agricultural UniversityBhagalpurIndia
  2. 2.Depeartment of Molecular Biology and Genetic EngineeringBihar Agricultural UniversityBhagalpurIndia
  3. 3.Department of Biotechnology, School of Earth, Biological and Environmental SciencesCentral University of South BiharGayaIndia
  4. 4.Depeartment of Plant Breeding and GeneticsMandan Bharti Agricultural College (Bihar Agricultural University)SaharsaIndia

Personalised recommendations