Production of Plant Secondary Metabolites: Current Status and Future Prospects

  • P. Silpa
  • K. Roopa
  • T. Dennis Thomas


Plants are the prime life-supporting system on earth. Despite its use as food, it is also utilized as a source of life-saving drugs for majority of the population in the world. Many plants yield phytochemicals known as secondary metabolites, which are pharmaceutically important and are extracted directly from the plants collected from natural habitat. Regardless of conventional methods, biotechnological approaches especially plant tissue culture techniques play a unique role in producing and extracting secondary metabolites at industrial level. This book chapter discusses the various strategies adopted for secondary metabolite production in plants.


Secondary metabolites Tissue culture Metabolic engineering Abiotic stress 


  1. Ahlawat, S., & Abdin, M. Z. (2017). Comparative study of withanolide production and the related transcriptional responses of biosynthetic genes in fungi elicited cell suspension culture of Withania somnifera in shake flask and bioreactor. Plant Physiology and Biochemistry, 114, 19–28.PubMedCrossRefGoogle Scholar
  2. Ahmad, N., Rab, A., & Ahmad, N. (2016). Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). Journal of Photochemistry and Photobiology. B, 154, 51–56.CrossRefGoogle Scholar
  3. Akillioglu M (1994) Zeytin agaclarinda dogel fenolik bilesiklerin mevsimsel degisimi Cizerinde arastirmalar [Investigations on the seasonal changes of natural phenolic compounds in olive tree]. PhD thesis, Ege Univ. Fen Bilimleri Enst. Bahce Bitkileri Anabilim Dali, Izmir.Google Scholar
  4. Ali, M., & Abbasi, B. H. (2014). Light-induced fluctuations in biomass accumulation, secondary metabolites production and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology B: Biology, 140, 223–227.CrossRefGoogle Scholar
  5. Alonso, R., Berli, F. J., Bottini, R., & Piccoli, P. (2015). Acclimation mechanisms elicited by sprayed abscisic acid, solar UV-B and water deficit in leaf tissues of field-grown grapevines. Plant Physiology and Biochemistry, 91, 56–60.PubMedCrossRefGoogle Scholar
  6. Anand. (2010). Various approaches for the secondary metabolite production through plant tissue culture. Pharmacia, 1, 1–7.Google Scholar
  7. Anjos, B. L., Nobre, V. M., Dantas, A. F., Medeiros, R. M., Neto, T. S. O., Molyneux, R. J., & RietCorrea, F. (2010). Poisoning of sheep by seeds of Crotalaria retusa: Acquired resistance by continuous administration of low doses. Toxicon, 55, 28–32.PubMedCrossRefGoogle Scholar
  8. Arora, J., Roat, C., Goyal, S., & Ramawat, K. G. (2009). High stilbenes accumulation in root cultures of Cayratia trifolia (L.) Domin grown in shake flasks. Acta Physiologiae Plantarum, 31, 1307–1312.CrossRefGoogle Scholar
  9. Barbosa-Ferreria, M., Brum, K. B., Oliveira, N. M., do Valle, C. B., Ferreira, V. B., Garcez, V. S., Riet-Correa, F., & de Lemos, R. A. (2011). Steroidal saponin protodioscin concentration in different species and cultivars of Brachiaria spp. Veterinaria e Zootecnia, 18, 98–103.Google Scholar
  10. Baslam, M., Esteban, R., García-Plazaola, J. I., & Goicoechea, N. (2013). Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology, 97, 3119–3128.PubMedCrossRefGoogle Scholar
  11. Behnke, K., Kaiser, A., Zimmer, I., Bru¨ggemann, N., Janz, D., Polle, A., Hampp, R., Ha¨nsch, R., Popko, J., Schmitt-Kopplin, P., Ehlting, B., Rennenberg, H., Barta, C., Loreto, F., & Schnitzler, J. (2010). RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and highlight intensities: A transcriptomic and metabolomic analysis. Plant Molecular Biology, 74, 61–75.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bhojwani, S. S., & Dantu, P. K. (2013). Micropropagation. In Plant tissue culture: An introductory text (pp. 245–274). London: Springer.CrossRefGoogle Scholar
  13. Binder, B. Y., Peebles, C. A., Shanks, J. V., & San, K. Y. (2009). The effects of UV-B stress on the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots. Biotechnology Progress, 25, 861–865.PubMedCrossRefGoogle Scholar
  14. Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolities: A historical perspective. Plant Science, 161, 839–851.CrossRefGoogle Scholar
  15. Brain, K. R., & Lockwood, G. B. (1976). Hormonal control of steroid levels in tissue cultures from Trigonella foenumgraecum. Phytochemistry, 15, 1651–1654.CrossRefGoogle Scholar
  16. Brodelius, P. (1985). The potential role of immobilization in plant cell biotechnology. Trends in Biotechnology, 3, 280–285.CrossRefGoogle Scholar
  17. Brown, G. D. (2010). The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L.(Qinghao). Molecules, 15, 7603–7698.PubMedCrossRefGoogle Scholar
  18. Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., & Giovannetti, M. (2010). Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 335, 311–323.CrossRefGoogle Scholar
  19. Chandra, S., & Chandra, R. (2011). Engineering secondary metabolite production in hairy roots. Phytochemistry Reviews, 10, 371–395.CrossRefGoogle Scholar
  20. Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthase in plants: A mid-size family of genes for specialised metabolism that is highly diversified throughout the kingdom. The Plant Journal, 66, 212–229.PubMedCrossRefGoogle Scholar
  21. Chen, S., Jin, W., Liu, A., Zhang, S., Liu, D., Wang, F., Lin, X., & He, C. (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae, 160, 222–229.CrossRefGoogle Scholar
  22. Cheynier, V. (2012). Phenolic compounds: From plants to foods. Phytochemistry Reviews, 11, 153–177.CrossRefGoogle Scholar
  23. Chu, E. Y., Möller, M. D., & Carvalho, J. G. (2001). Effects of mycorrhizal inoculation on soursop seedlings in fumigated and not fumigated soil. Pesquisa Agropecuária Brasileira, 36, 671–680.CrossRefGoogle Scholar
  24. Cosme, M., Franken, P., Mewis, I., Baldermann, S., & Wurst, S. (2014). Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera. Mycorrhiza, 24, 565–570.PubMedCrossRefGoogle Scholar
  25. Daxenbichler, M. E., VanEtten, C. H., Hallinan, E. A., Earle, F. R., & Barclay, A. S. (1971). Seeds as sources of L-DOPA. Journal of Medicinal Chemistry, 14, 463–465.PubMedCrossRefGoogle Scholar
  26. Dörnenburg, H., & Knorr, D. (1995). Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and Microbial Technology, 17, 674–684.CrossRefGoogle Scholar
  27. Elgar, S. M. (2017). Metabolic engineering for the production of functionalized terpenoids in heterologous hosts. Doctoral dissertation, Massachusetts Institute of Technology, USA.Google Scholar
  28. Engels, B., Dahm, P., & Jennewein, S. (2008). Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metabolic Engineering, 10, 201–206.PubMedCrossRefGoogle Scholar
  29. Escoriaza, G., Sansberro, P., Garcia-Lampasona, S., Gatica, M., Bottini, R., & Piccoli, P. (2013). In vitro cultures of Vitis vinifera L. cv. Chardonnay synthesize the phytoalexin nerolidol upon infection by Phaeoacremonium parasiticum. Phytopathologia Mediterranea, 52, 289–297.Google Scholar
  30. Fazal, H., Abbasi, B. H., & Ahmad, N. (2014). Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L. Applied Biochemistry and Biotechnology, 74, 2086–2095.CrossRefGoogle Scholar
  31. Fazilatun, N., Nornisah, M., & Zhari, I. (2004). Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharmaceutical Biology, 42, 404–408.CrossRefGoogle Scholar
  32. Filová, A. (2014). Production of secondary metabolities in plant tissue cultures. Research Journal of Agricultural Science, 46, 236–245.Google Scholar
  33. Flores, T., Todd, C. D., Tovar-Mendez, A., Dhanoa, P. K., Correa-Aragunde, N., Hoyos, M. E., & Polacco, J. C. (2008). Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiology, 147, 1936–1946.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fowler, M. W. (1985). Problems in commercial exploitation of plant tissue cultures. In K. H. Neumann, W. Barz, & E. Reinhardt (Eds.), Primary and secondary metabolism of plant cell cultures (pp. 362–378). Berlin: Springer.CrossRefGoogle Scholar
  35. Funk, C., Gügler, K., & Brodelius, P. (1987). Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochemistry, 26, 401–405.CrossRefGoogle Scholar
  36. Furuya, T., Ikuta, A., & Syono, K. (1972). Alkaloids from callus cultures of Papaver somniferum. Phytochemistry, 11, 3041–3044.CrossRefGoogle Scholar
  37. Gao, S. L., Zhu, D. N., Cai, Z. H., Jiang, Y., & Xu, D. R. (1999). Organ culture of a precious Chinese medicinal plant – Fritillaria unibracteata. Plant Cell, Tissue and Organ Culture, 59, 197–201.CrossRefGoogle Scholar
  38. Georgiev, M., Georgiev, V., Penchev, P., Antonova, D., Pavlov, A., Ilieva, M., & Popov, S. (2010). Volatile metabolic profiles of cell suspension cultures of Lavandula vera, Nicotiana tabacum and Helianthus annuus, cultivated under different regimes. Engineering in Life Sciences, 10, 148–157.Google Scholar
  39. Gobbo-Neto, L., Guaratini, T., Pessoa, C., Moraes, M. O. D., Costa-Lotufo, L. V., Vieira, R. F., & Lopes, N. P. (2010). Differential metabolic and biological profiles of Lychnophora ericoides mart.(Asteraceae) from different localities in the Brazilian“ campos rupestres”. Journal of the Brazilian Chemical Society, 21, 750–759.CrossRefGoogle Scholar
  40. Heidari, M., & Karami, V. (2014). Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. Journal of the Saudi Society of Agricultural Sciences, 13, 9–13.CrossRefGoogle Scholar
  41. Herre, E. A., Mejia, l C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, L., & Van bael, S. A. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88, 550–558.PubMedCrossRefGoogle Scholar
  42. Hibino, K., & Ushiyama, K. (1999). Commercial production of ginseng by plant tissue culture technology. In T.-J. Fu, G. Singh, & W. R. Curtis (Eds.), Plant cell and tissue culture for the production of food ingredients (Vol. 30, pp. 215–224). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  43. Hong, J. K., Yun, B. W., Kang, J. G., Raja, M. U., Kwon, E., Sorhagen, K., Chu, C., Wang, Y., & Loake, G. J. (2008). Nitric oxide function and signalling in plant disease resistance. Journal of Experimental Botany, 59, 147–154.PubMedCrossRefGoogle Scholar
  44. Huang, T. K., & McDonald, K. A. (2009). Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochemical Engineering Journal, 45, 168–184.CrossRefGoogle Scholar
  45. Huang, W. Y., Cai, Y. Z., & Zhang, Y. (2010). Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutrition and Cancer, 62, 1–20.PubMedCrossRefGoogle Scholar
  46. Huang, Z. A., Zhao, T., Fan, H. J., Wang, N., Zheng, S. S., & Ling, H. Q. (2012). The upregulation of NtAN2 expression at low temperature is required for anthocyanin accumulation in juvenile leaves of Lc-transgenic tobacco (Nicotiana tabacum L.). Journal of Genetics and Genomics, 39, 149–156.PubMedCrossRefGoogle Scholar
  47. Jang, H. R., Lee, H. J., Shohael, A. M., Park, B. J., Paek, K. Y., & Park, S. Y. (2016). Production of biomass and bioactive compounds from shoot cultures of Rosa rugosa using a bioreactor culture system. Horticulture, Environment and Biotechnology, 57, 79–87.CrossRefGoogle Scholar
  48. Jeong, G. T., & Park, D. H. (2006). Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system. In M. M. JD, W. S. Adney, J. R. Mielenz, & T. Klasson (Eds.), Applied biochemistry and biotechnology (pp. 436–446). New York: Humana Press.Google Scholar
  49. Jin, M. Y., Han, L., Li, H., Wang, H. Q., Piao, X. C., & Lian, M. L. (2017). Kinsenoside and polysaccharide production by rhizome culture of Anoectochilus roxburghii in continuous immersion bioreactor systems. Plant Cell, Tissue and Organ Culture, 131, 527. (online first).CrossRefGoogle Scholar
  50. Jose, S., & Thomas, T. D. (2014). Comparative phytochemical and antibacterial studies of two indigenous medicinal plants Curcuma caesia Roxb. and Curcuma aeruginosa. International Journal of Green Pharmacy, 8, 65–71.CrossRefGoogle Scholar
  51. Jouanin, L. (1984). Restriction map of an agropine-type Ri plasmid and its homologies with Ti plasmids. Plasmid, 12, 91–102.PubMedCrossRefGoogle Scholar
  52. Kaimoyo, E., Farag, M. A., Sumner, L. W., Wasmann, C., Cuello, J. L., & VanEtten, H. (2008). Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Biotechnology Progress, 24, 377–384.PubMedCrossRefGoogle Scholar
  53. Kajula, M., Tejesvi, M. V., Kolehmainen, S., Mäkinen, A., Hokkanen, J., Mattila, S., & Pirttilä, A. M. (2010). The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biology, 114, 248–254.PubMedCrossRefGoogle Scholar
  54. Karam, F. S., Haraguchi, M., & Gardner, D. (2011). Seasonal variation in pyrrolizidine alkaloid concentration and plant development in Senecio madagascariensis Poir.(Asteraceae) in Brazil. In F. Riet-Correa (Ed.), Poisoning by plants, mycotoxins and related toxins (pp. 179–185). Wallingford: CAB International.CrossRefGoogle Scholar
  55. Karppinen, K., Hokkanen, J., Tolonen, A., Mattila, S., & Hohtola, A. (2007). Biosynthesis of hyperforin and adhyperforin from amino acid precursors in shoot cultures of Hypericum perforatum. Phytochemistry, 68, 1038–1045.PubMedCrossRefGoogle Scholar
  56. Karuppusamy, S. (2009). A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. Journal of Medicinal Plant Research, 3, 1222–1239.Google Scholar
  57. Karwasara, V. S., Jain, R., Tomar, P., & Dixit, V. K. (2010). Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cellular and Development Biology – Plant, 46, 354–362.CrossRefGoogle Scholar
  58. Keeling, C. I., Weisshar, S., Lin, R. P., & Bohlmann, J. (2008). Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proceedings of the National Academy of Sciences of the United States of America, 105, 1085–1090.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Keles, L. C., Melo, N. I. D., Aguiar, G. D. P., Wakabayashi, K. A. L., Carvalho, C. E. D., Cunha, W. R., & Lopes, N. P. (2010). Lychnophorinae (Asteraceae): A survey of its chemical constituents and biological activities. Quim Nova, 33, 2245–2260.CrossRefGoogle Scholar
  60. Khalili, M., Hasanloo, T., & Kazemi Tabar, S. K. (2010). Ag {+} enhanced silymarin production in hairy root cultures of‘ Silybum marianum’(L.) gaertn. Plant Omics, 3, 109.Google Scholar
  61. Kim, O. T., Kim, M. Y., Hong, M. H., Ahn, J. C., & Hwang, B. (2004). Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) Urban by elicitors. Plant Cell Reports, 23, 339–344.PubMedCrossRefGoogle Scholar
  62. Lambert, E., Faizal, A., & Geelen, D. (2011). Modulation of triterpene saponin production: In vitro cultures, elicitation, and metabolic engineering. Applied Biochemistry and Biotechnology, 164, 220–237.PubMedCrossRefGoogle Scholar
  63. Leicach, S. R., & Chludil, H. D. (2014). Plant secondary metabolites: Structure–activity relationships in human health prevention and treatment of common diseases. In Atta-ur-Rahman (Ed.), Studies in natural products chemistry (pp. 267–270). Amsterdam: Elsevier.Google Scholar
  64. Li, W., Koike, K., Asada, Y., Hirotani, M., Rui, H., Yoshikawa, T., & Nikaido, T. (2002). Flavonoids from Glycyrrhiza pallidiflora hairy root cultures. Phytochemistry, 60, 351–355.PubMedCrossRefGoogle Scholar
  65. Lindsey, K. (1995). Manipulation by nutrient limitation of the biosynthetic activity of immobilized cells of Capsicum frutescens Mill. ev. annum. Planta, 165, 126–133.CrossRefGoogle Scholar
  66. LIN-WANG, K. U., Micheletti, D., Palmer, J., Volz, R., Lozano, L., Espley, R., & Iglesias. (2011). High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell & Environment, 34, 1176–1190.CrossRefGoogle Scholar
  67. Long, R. M., & Croteau, R. (2005). Preliminary assessment of the C13-side chain 2′- hydroxylase involved in Taxol biosynthesis. Biochemical and Biophysical Research Communications, 338, 410–417.PubMedCrossRefGoogle Scholar
  68. Lucena, R. B., Rissi, D. R., Maia, L. A., Flores, M. M., Dantas, A. F. M., Nobre, V. M. D. T., & Barros, C. S. (2010). Poisoning by pyrrolizidine alkaloids in ruminants and horses in Brazil. Pesquisa Veterinaria Brasileira, 30, 447–452.CrossRefGoogle Scholar
  69. Ludwing-Muller, J., Jahn, L., Lippert, A., Puschel, J., & Walter, A. (2014). Improvement of hairy root cultures and plants by changing biosynthetic pathways leading to pharmaceutical metabolites: Strategies and applications. Biotechnology Advances, 32, 1168–1179.CrossRefGoogle Scholar
  70. Lulu, T., Park, S. Y., Ibrahim, R., & Paek, K. Y. (2015). Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system. Journal of Bioscience and Bioengineering, 119, 712–717.PubMedCrossRefGoogle Scholar
  71. Mahajan, V., Sharma, N., Kumar, S., Bhardwaj, V., Ali, A., Khajuria, R. K., Bedi, Y. S., Vishwakarma, R. A., & Gandhi, S. G. (2015). Production of rohitukine in leaves and seeds of Dysoxylum binectariferum: An alternate renewable resource. Pharmaceutical Biology, 53, 446–450.PubMedCrossRefGoogle Scholar
  72. Maier, W., Peipp, H., Schimidt, J., Wray, V., & Strack, D. (1995). Levels ofterpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiology, 109, 465–470.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mandal, S., Evelin, H., Giri, B., Singh, V. P., & Kapoor, R. (2013). Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Applied Soil Ecology, 72, 187–194.CrossRefGoogle Scholar
  74. Marsik, P., Langhansova, L., Dvorakova, M., Cigler, P., Hruby, M., & Vanek, T. (2014). Increased ginsenosides production by elicitation of in vitro cultivated Panax ginseng adventitious roots. Medicinal and Aromatic Plants, 3, 1–5.Google Scholar
  75. Matsubara, Y., Ishigaki, T., & Koshikawa, K. (2009). Changes in free amino acid concentrations in mycorrhizal strawberry plants. Scientia Horticulturae, 119, 392–396.CrossRefGoogle Scholar
  76. Matoušek, J., Kocábek, T., Patzak, J., Füssy, Z., Procházková, J., & Heyerick, A. (2012). Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs _H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.). BMC Plant Biology, 12, 27.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Morimoto, T., Hara, Y., Kato, Y., Hiratsuka, J., Yoshioka, T., Fujita, Y., & Yamada, Y. (1988). Berberine production by cultured Coptis japonica cells in a one-stage culture using medium with a high copper concentration. Agricultural and Biological Chemistry, 52, 1835–1836.Google Scholar
  78. Mukherjee, C., Sircar, D., Chatterjee, M., Das, S., & Mitra, A. (2014). Combating photo oxidative stress in green hairy roots of Daucus carota cultivated under light irradiation. Journal of Plant Physiology, 171, 179–187.PubMedCrossRefGoogle Scholar
  79. Mukherjee, C., Samanta, T., & Mitra, A. (2016). Redirection of metabolite biosynthesis from hydroxybenzoate to volatile terpenoids in green hairy roots in Daucus carota. Planta, 243, 305–320.PubMedCrossRefGoogle Scholar
  80. Naik, P. M., & Al-Khayri, J. M. (2015). Impact of abiotic elicitors on in vitro production of plant secondary metabolites: A review. Journal of Advanced Research in Biotechnology, 1, 1–7.Google Scholar
  81. Nakagawa, K., Konagai, A., Fukui, H., & Tabata, M. (1984). Release and crystallization of berberine in the liquid medium of Thalictrum minus cell suspension cultures. Plant Cell Reports, 3, 254–257.PubMedCrossRefGoogle Scholar
  82. Nakagawa, K., Fukui, H., & Tabata, M. (1986). Hormonal regulation of berberine production in cell suspension cultures of Thalictrum minus. Plant Cell Reports, 5, 69–71.PubMedCrossRefGoogle Scholar
  83. Navarre, D. A., Payyavula, R. S., Shakya, R., Knowles, N. R., & Pillai, S. S. (2013). Changes in potato phenylpropanoid metabolism during tuber development. Plant Physiology and Biochemistry, 65, 89–101.PubMedCrossRefGoogle Scholar
  84. Noble, R. L. (1990). The discovery of the vinca alkaloids chemotherapeutic agents against cancer. Biochemistry and Cell Biology, 68, 1344–1351.PubMedCrossRefGoogle Scholar
  85. Nogueira, J. M. F., & Romano, A. (2002). Essential oils from micropropagated plants of Lavandula viridis. Phytochemical Analysis, 13, 4–7.PubMedCrossRefGoogle Scholar
  86. Oksman-Caldentey, K. M., & Inzé, D. (2004). Plant cell factories in the post-genomic era: New ways to produce designer secondary metabolites. Trends in Plant Science, 9, 433–440.PubMedCrossRefGoogle Scholar
  87. Oliveira, M. S., Campos, M. A., & Silva, F. S. (2015). Arbuscular mycorrhizal fungi and vermi compost to maximize the production of foliar biomolecules in Passiflora alata Curtis seedlings. Journal of the Science of Food and Agriculture, 95, 522–528.PubMedCrossRefGoogle Scholar
  88. Ouzounis, T., Fretté, X., Rosenqvist, E., & Ottosen, C. O. (2014). Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of Plant Physiology, 171, 1491–1499.PubMedCrossRefGoogle Scholar
  89. Padmanabha, B. V., Chandrashekar, M., Ramesha, B. T., Gowda, H. H., Gunaga, R. P., Suhas, S., & Shaanker, R. U. (2006). Patterns of accumulation of camptothecin, an anti-cancer alkaloid in Nothapodytes nimmoniana Graham., in the Western Ghats, India: Implications for identifying high-yielding sources of the alkaloid. Current Science, 90, 95–100.Google Scholar
  90. Palazón, J., Piñol, M. T., Cusido, R. M., Morales, C., & Bonfill, M. (1997). Application of transformed root technology to the production of bioactive metabolites. Recent Research and Development Plant Physiology, 1, 125–143.Google Scholar
  91. Pandey, S. (2017). Catharanthus roseus: Cultivation under stress conditions. In M. Naeem, T. Aftab, & K. MMA (Eds.), Catharanthus roseus (pp. 383–397). Cham: Springer.CrossRefGoogle Scholar
  92. Patel, S., Gaur, R., Verma, P., Bhakuni, R. S., & Mathur, A. (2010). Biotransformation of artemisinin using cell suspension cultures of Catharanthus roseus (L.) G. Don and Lavandula officinalis L. Biotechnology Letters, 32, 1167–1171.PubMedCrossRefGoogle Scholar
  93. Patel, S., Rashmi, G., Mohita, U., Archana, M., Ajay, K. M., & Rajendra, S. B. (2011). Glycyrrhiza glabra (Linn.) and Lavandula officinalis (L.) cell suspension cultures-based biotransformation of β-artemether. Journal of Natural Medicines, 65, 646–650.PubMedCrossRefGoogle Scholar
  94. Patel, N., Patel, P., & Khan, B. M. (2016). Metabolic engineering: Achieving new insights to ameliorate metabolic profiles in Withania somnifera. In H. S. Tsay, L. F. Shyur, D. Agrawal, Y. C. Wu, & S. Y. Wang (Eds.), Medicinal plants- recent advances in research and development (pp. 191–214). Singapore: Springer.CrossRefGoogle Scholar
  95. Pavarini, D. P., Pavarini, S. P., Niehues, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176, 5–16.CrossRefGoogle Scholar
  96. Pavlov, A. I., Georgiev, M. I., Panchev, I. N., & Ilieva, M. P. (2005). Optimization of rosmarinic acid production by Lavandula vera MM plant cell suspension in a laboratory bioreactor. Biotechnology Progress, 21, 394–396.PubMedCrossRefGoogle Scholar
  97. Pedone-Bonfim, M. V., Lins, M. A., Coelho, I. R., Santana, A. S., Silva, F. S., & Maia, L. C. (2013). Mycorrhizal technology and phosphorus in the production of primary and secondary metabolites in cebil (Anadenanthera colubrina (Vell.) Brenan) seedlings. Journal of the Science of Food and Agriculture, 93, 1479–1484.PubMedCrossRefGoogle Scholar
  98. Pence, V. C. (2011). Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cellular & Development Biology – Plant, 47, 176–187.CrossRefGoogle Scholar
  99. Ponce, M. A., Scervino, J. M., Erra-Balsells, R., Ocampo, J. A., & Godeas, A. M. (2004). Flavonoids from shoots and roots of Trifolium repens (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus Glomus intraradices. Phytochemistry, 65, 1925–1930.PubMedCrossRefGoogle Scholar
  100. Radman, R., Saez, T., Bucke, C., & Keshavarz, T. (2003). Elicitation of plants and microbial cell systems. Biotechnology and Applied Biochemistry, 37, 91–102.PubMedCrossRefGoogle Scholar
  101. Rai, M. A., Gade, A. N., Rathod, D., Dar, M. U., & Varma, A. (2012). Mycoendophytes in medicinal plants: Diversity and bioactivities. Bioscience, 4, 86–96.Google Scholar
  102. Ralphs, M. H., Creamer, R., Baucom, D., Gardner, D. R., Welsh, S. L., Graham, J. D., & Stegelmeier, B. L. (2008). Relationship between the endophyte Embellisia spp. and the toxic alkaloid swainsonine in major locoweed species (Astragalus and Oxytropis). Journal of Chemical Ecology, 34, 32–38.PubMedCrossRefGoogle Scholar
  103. Rao, S. R., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolities. Biotechnology advances, 20, 101–153.PubMedCrossRefGoogle Scholar
  104. Ravishankar, G. A., Suresh, B., Giridhar, P., Rao, S. R., & Johnson, T. S. (2003). Biotechnological studies on Capsicum for metabolite production and plant improvement. In K. D. Amit (Ed.), Capsicum the genus Capsicum (pp. 96–128). Boca Raton: CRC Press.Google Scholar
  105. Rhee, H. S., Cho, H. Y., Son, S. Y., Yoon, S. Y. H., & Park, J. M. (2010). Enhanced accumulation of decursin and decursinol angelate in root cultures and intact roots of Angelica gigas Nakai following elicitation. Plant Cell, Tissue and Organ Culture, 101, 295–302.CrossRefGoogle Scholar
  106. Sabir, F., Mishra, S., Sangwan, R. S., Jadaun, J. S., & Sangwan, N. S. (2013). Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma, 250, 539–549.PubMedCrossRefGoogle Scholar
  107. Santos, R. M., Fortes, G. A., Ferri, P. H., & Santos, S. C. (2011). Influence of foliar nutrients on phenol levels in leaves of Eugenia uniflora. Revista Brasileira de Farmacognosia, 21, 581–586.CrossRefGoogle Scholar
  108. Sharma, V., Goyal, S., & Ramawat, K. G. (2011). Increased puerarin biosynthesis during in vitro shoot formation in Pueraria tuberosa grown in growtek bioreactor with aeration. Physiology and Molecular Biology of Plants, 17, 87–92.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Silva, M. A., Cavalcante, U. M. T., Silva, F. S. B., Soares, S. A. G., & Maia, L. C. (2004). Crescimento de mudas de maracujazeiro-doce (Passifloraalata Curtis) associadas a fungosmicorrı’zicosarbusculares (Glomeromycota). Acta Botânica Brasílica, 18, 981–985.CrossRefGoogle Scholar
  110. Smetanska, I. (2008). Production of secondary metabolites using plant cell cultures. Food Biotechnology, 111, 187–228.CrossRefGoogle Scholar
  111. Smith, M. A. L., Kobayashi, H., Gawienowski, M., & Briskin, D. P. (2002). An in vitro approach to investigate medicinal chemical synthesis by three herbal plants. Plant Cell, Tissue and Organ Culture, 70, 105–111.CrossRefGoogle Scholar
  112. Sood, H., & Chauhan, R. S. (2010). Biosynthesis and accumulation of a medicinal compound, Picroside-I, in cultures of Picrorhiza kurroa Royle ex Benth. Plant Cell, Tissue and Organ Culture, 100, 113.CrossRefGoogle Scholar
  113. Strobel, G., Stierle, A., Stierle, D., & Hess, W. M. (1993). Taxomyces andreanae, a proposed new taxon for a Bulbilliferous hyphomycete associated with Pacific yew (Taxus brevifolia). Mycotaxon, 47, 71–80.Google Scholar
  114. Su, W. W. (2006). Bioreactor engineering for recombinant protein production using plant cell suspension culture. In S. D. Gupta & Y. Ibaraki (Eds.), Plant tissue culture engineering (pp. 135–159). Dordrecht: Springer.Google Scholar
  115. Szakiel, A., Pączkowski, C., & Henry, M. (2011). Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Reviews, 10, 471–491.CrossRefGoogle Scholar
  116. Taiz, L., & Zeiger, E. (2004). Plant physiology (3rd ed.pp. 286–287). Sunderland: Sinauer Associates Publishers.Google Scholar
  117. Tal, B., Tamir, I., Rokem, J. S., & Goldberg, I. (1984). Isolation and characterization of an intermediate steroid metabolite in diosgenin biosynthesis in suspension cultures of Dioscorea deltoidea cells. The Biochemical Journal, 219, 619–624.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Thengane, S. R., Kulkarni, D. K., Shrikhande, V. A., Joshi, S. P., Sonawane, K. B., & Krishnamurthy, K. V. (2003). Influence of medium composition on callus induction and camptothecin (s) accumulation in Nothapodytes foetida. Plant Cell, Tissue and Organ Culture, 72, 247–251.CrossRefGoogle Scholar
  119. Thoppil, R. J., & Bishayee, A. (2011). Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World Journal of Hepatology, 3, 228–249.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Trujillo-Villanueva, K., Rubio-Piña, J., Monforte-González, M., & Vázquez-Flota, F. (2010). Fusarium oxysporum homogenates and jasmonate induce limited sanguinarine accumulation in Argemone mexicana cell cultures. Biotechnology Letters, 32, 1005–1009.PubMedCrossRefGoogle Scholar
  121. Vanisree, M., Lee, C. Y., Lo, S. F., Nalawade, S. M., Lin, C. Y., & Tsay, H. S. (2004). Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures. Botanical Bulletin of Academia Sinica, 45, 1–22.Google Scholar
  122. Verma, A., Laakso, I., Seppänen-Laakso, T., Huhtikangas, A., & Riekkola, M. L. (2007). A simplified procedure for indole alkaloid extraction from Catharanthus roseus combined with a semi-synthetic production process for vinblastine. Molecules, 12, 1307–1315.PubMedCrossRefGoogle Scholar
  123. Vialart, G., Hehn, A., Olry, A., Ito, K., Krieger, C., Larbat, R., Paris, C., Shimizu, B. I., Sugimoto, Y., Mizutani, M., & Bourgaud, F. (2012). A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2′-hydroxylase activity (C2′ H): A missing step in the synthesis of umbelliferone in plants. The Plant Journal, 70, 460–470.PubMedCrossRefGoogle Scholar
  124. Wink, M. (2003). Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry, 64, 3–19.PubMedCrossRefGoogle Scholar
  125. Wink, M. (2013). Evolution of secondary metabolites in legumes (Fabaceae). South African Journal of Botany, 89, 164–175.CrossRefGoogle Scholar
  126. Wink, M., & Schimmer, O. (2010). Molecular modes of action of defensive secondary metabolites. In M. Wink (Ed.), Functions and biotechnology of plant secondary metabolites (pp. 21–161). Hoboken: Wiley.CrossRefGoogle Scholar
  127. Xu, M., & Dong, J. (2008). Synergistic action between jasmonic acid and nitric oxide in inducing matrine accumulation of Sophora flavescens suspension cells. Journal of Integrative Plant Biology, 50, 92–101.PubMedCrossRefGoogle Scholar
  128. Yang, X., Strobel, G., Stierle, A., Hess, W. M., Lee, J., & Clardy, J. (1994). A fungal endophyte-tree relationship: Phoma sp. in Taxus wallachiana. Plant Science, 102, 1–9.CrossRefGoogle Scholar
  129. Yoshikawa, T., & Furuya, T. (1985). Morphinan alkaloid production by tissues differentiated from cultured cells of Papaver somniferum. Planta Medica, 2, 110–113.CrossRefGoogle Scholar
  130. Zabala, M. A., Angarita, M., Restrepo, J. M., Caicedo, L. A., & Perea, M. (2010). Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana. In Vitro Cellular and Developmental Biology, 46, 233–238.CrossRefGoogle Scholar
  131. Zhang, W. J., Su, J., Tan, M. Y., Liu, G. L., Pang, Y. J., Shen, H. G., & Yang, Y. (2010). Expression analysis of shikonin-biosynthetic genes in response to M9 medium and light in Lithospermum erythrorhizon cell cultures. Plant Cell, Tissue and Organ Culture, 101, 135–142.CrossRefGoogle Scholar
  132. Zhao, J., Zhu, W. H., & Hu, Q. (2001). Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzyme and Microbial Technology, 28, 673–681.PubMedCrossRefGoogle Scholar
  133. Zhao, Y. H., Jia, X., Wang, W. K., Liu, T., Huang, S. P., & Yang, M. Y. (2016). Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd-and Pb-contaminated soils. Science of The Total Environment, 565, 586–594.PubMedCrossRefGoogle Scholar
  134. Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology, 59, 735–769.PubMedCrossRefGoogle Scholar
  135. Zuzarte, M. R., Dinis, A. M., Cavaleiro, C., Salgueiro, L. R., & Canhoto, J. M. (2010). Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Industrial Crops and Products, 32, 580–587.CrossRefGoogle Scholar
  136. Zwenger, S. (2008). Plant terpenoids: Applications and future potentials. Biotechnology and Molecular Biology Reviews, 3, 1–7.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Silpa
    • 1
  • K. Roopa
    • 1
  • T. Dennis Thomas
    • 1
  1. 1.Department of Plant ScienceRiverside Transit Campus, Central University of KeralaKasaragodIndia

Personalised recommendations