Advertisement

Control Strategy and Stability Analysis of Energy Router

  • Qiuye Sun
Chapter
Part of the Renewable Energy Sources & Energy Storage book series (RESES)

Abstract

This chapter introduces the structure of energy router in detail, deduction of the mathematical model of energy router, design of an energy management strategy and analyzation of the stability of energy router. By analyzing the mathematical model of the energy router, an optimal energy flow strategy is designed and the power exchange of each subsystem in the energy router is realized. The small signal model of the energy router is obtained and a new stability criterion is designed to judge the stability of the system.

References

  1. 1.
    Y. Xu, J. Zhang, W. Wang, A. Juneja, S. Bhattacharys, Energy router: architectures and functionalities toward energy internet. IEEE Trans. Smart Grid 31–36 (2016)Google Scholar
  2. 2.
    P. Yi, T. Zhu, B. Jiang, R. Jin, B. Wang, Deploying energy routers in an energy Inter-net based on electric vehicles. IEEE Trans. Veh. Technol. 65(6), 4714–4725 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Zhao, J. Zeng, S. Bhattacharya, M.E. Baran, A.Q. Huang, An average model of solid state transformer for dynamic system simulation, in Proceedings of the IEEE Power and Energy Society General Meeting, pp. 1–8Google Scholar
  4. 4.
    F. Gao, Z. Li, P. Wang, F. Xu, Z. Chu, Z. Sun, Y. Li, Prototype of smart energy router for distribution DC grid, in Proceedings of 2015 Power Electronics and Applications (EPE’15 ECCE-Europe), pp. 1–9Google Scholar
  5. 5.
    S. Lu, Z. Zhao, J. Ge, L. Yuan, T. Lu, A new power circuit topology for energy router, in Proceedings of 2014 IEEE International Conference on Electrical Machines and Systems (ICEMS), pp. 1921–1925Google Scholar
  6. 6.
    A. Sanchez-Squella, R. Ortega, R. Grino, S. Malo, Dynamic energy router. IEEE Con-trol Syst. 30(6), 72–80 (2010)CrossRefGoogle Scholar
  7. 7.
    X. Guo, H. Wang, Z. Lu, New inverter topology for ground current suppression in trans-formerless photovoltaic system application. J. Mod. Power Syst. Clean Energy 2(2), 191–194 (2014)CrossRefGoogle Scholar
  8. 8.
    F. Wang, A. Huang, G. Wang, X. She, R. Burgos, Feed-forward control of solid state transformer, in Proceedings of 2012 IEEE, Applied Power Electronics Conference and Exposition (APEC), pp. 1153–1158Google Scholar
  9. 9.
    Q. Duan, C. Ma, W. Sheng, C. Shi, Research on power quality control in distribution grid based on energy router, in Proceedings of 2014 Power System Technology (POWERCON), pp. 2115–2121Google Scholar
  10. 10.
    J. Cao, M. Yang, Energy internet - towards smart grid 2.0, in Proceedings of 2013 Fourth International Conference on Networking and Distributed Computing (ICNDC), pp. 105–110Google Scholar
  11. 11.
    L. Chen, Q. Sun, L. Zhao, Q. Cheng, Design of a novel energy router and its application in energy internet, in Proceedings of 2015, Chinese Automation Congress (CAC), pp. 1462–1467Google Scholar
  12. 12.
    B. Wen, D. Dong, D. Boroyevich, R. Burgos, P. Mattavelli, Z. Shen, Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters. IEEE Trans. Power Electron. 31(1), 26–38 (2016)CrossRefGoogle Scholar
  13. 13.
    J.Z. Zhou, H. Ding, S. Fan, Y. Zhang, A.M. Gole, Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Convert-er. IEEE Trans. Power Deliv. 29(5), 2287–2296 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Xin, L. Huang, L. Zhang, Z. Wang, J. Hu, Synchronous instability mechanism of P-f droop-controlled voltage source converter caused by current saturation. IEEE Trans. Power Syst. 31(6), 5206–5207 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, S. Kim, Q. Sun, J. Zhou, Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids. IEEE Trans. Smart Grid PP(99), 1–13Google Scholar
  16. 16.
    M. Khazraei, V.A.K. Prabhala, R. Ahmadi, M. Ferdowsi, Solid-state transformer stability and control considerations, in 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX (2014), pp. 2237–2244Google Scholar
  17. 17.
    D.G. Shah, M.L. Crow, Stability design criteria for distribution systems with solid-state transformers. IEEE Trans. Power Deliv. 29(6), 2588–2595 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Cao, Y. Ma, F. Wang, Sequence-impedance-based harmonic stability analysis and controller parameter design of three-phase inverter-based multibus AC power systems. IEEE Trans. Power Electron. 32(10), 7674–7693 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Amin; M. Molinas, Small-Signal stability assessment of power electronics based power systems: a discussion of impedance- and eigenvalue-based methods. IEEE Trans. Ind. Appl. PP(99), 1–1Google Scholar
  20. 20.
    A. Kahrobaeian, Y.A.R.I. Mohamed, Analysis and mitigation of low-frequency in-stabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Trans. Ind. Electron. 61(4), 1643–1658 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, X. Wang, F. Blaabjerg, Z. Chen, Harmonic instability assessment using state-space modeling and participation analysis in inverter-fed power systems. IEEE Trans. Ind. Electron. 64(1), 806–816 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Luo, S.V. Dhople, Spatiotemporal model reduction of inverter-based islanded microgrids. IEEE Trans. Energy Convers. 29(4), 823–832 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Dorfler, F. Bullo, Kron reduction of graphs with applications to electrical net-works. IEEE Trans. Circuits Syst. I: Regul. Papers 60(1), 150–163 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Rasheduzzaman, J.A. Mueller, J.W. Kimball, Reduced-order small-signal model of microgrid systems. IEEE Trans. Sustain. Energy 6(4), 1292–1305 (2015)CrossRefGoogle Scholar
  25. 25.
    B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli, Z. Shen, Inverse Nyquist stability criterion for grid-tied inverters. IEEE Trans. Power Electron. 32(2), 1548–1556 (2017)CrossRefGoogle Scholar
  26. 26.
    A.A.A. Radwan, Y.A.R.I. Mohamed, Stabilization of medium-frequency modes in isolated Microgrids supplying direct online induction motor loads. IEEE Trans. Smart Grid 5(1), 358–370 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Zhou; P. Shi; D. Gan; Y. Xu; H. Xin; C. Jiang; H. Xie; W. Tao, Large-scale power sys-tem robust stability analysis based on value set approach. IEEE Trans. Power Syst. PP(99), 1–1Google Scholar
  28. 28.
    D. Dong, B. Wen, D. Boroyevich, P. Mattavelli, Y. Xue, Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions. IEEE Trans. Ind. Electron. 62(1), 310–321 (2015)CrossRefGoogle Scholar
  29. 29.
    W. Cao, Y. Ma, L. Yang, F. Wang, L.M. Tolbert, D–Q impedance based stability analysis and parameter design of three-phase inverter-based AC power systems. IEEE Trans. Ind. Electron. 64(7), 6017–6028 (2017)CrossRefGoogle Scholar
  30. 30.
    B. Wen, D. Dong, D. Boroyevich, R. Burgos, P. Mattavelli, Z. Shen, Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters. IEEE Trans. Power Electron. 31(1), 26–38 (2016)CrossRefGoogle Scholar
  31. 31.
    J. Sun, Impedance-based stability criterion for grid-connected inverters. IEEE Trans. Power Electron. 26(11), 3075–3078 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Vesti, T. Suntio, J.A. Oliver, R. Prieto, J.A. Cobos, Impedance-based stability and transient-performance assessment applying maximum peak criteria. IEEE Trans. Power Electron. 28(5), 2099–2104 (2013)CrossRefGoogle Scholar
  33. 33.
    F. Liu, J. Liu, H. Zhang, D. Xue, Stability issues of $Z + Z$ type cascade system in hybrid energy storage system (HESS). IEEE Trans. Power Electron. 29(11), 5846–5859 (2014)CrossRefGoogle Scholar
  34. 34.
    Z. Liu, J. Liu, W. Bao, Y. Zhao, Infinity-Norm of impedance-based stability criterion for three-phase AC distributed power systems with constant power loads. IEEE Trans. Power Electron. 30(6), 3030–3043 (2015)CrossRefGoogle Scholar
  35. 35.
    W. Wu et al., A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines. IEEE Trans. Ind. Electron. 64(7), 6005–6016 (2017)CrossRefGoogle Scholar
  36. 36.
    A. Rodríguez, A. Vázquez, D.G. Lamar, M.M. Hernando, J. Sebastián, Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control. IEEE Trans. Power Electron. 30(2), 790–804 (2015)CrossRefGoogle Scholar
  37. 37.
    J. Liu, Y. Miura, T. Ise, Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Trans. Power Electron. 31(5), 3600–3611 (2016)CrossRefGoogle Scholar
  38. 38.
    I. Cvetkovic, D. Boroyevich, P. Mattavelli, F.C. Lee and D. Dong, Unterminated small-signal behavioral model of dc–dc converters. IEEE Trans. Power Electron. 28(4), 1870–1879 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations