Single Cell Genetics and Epigenetics in Early Embryo: From Oocyte to Blastocyst

  • Yubao Wei
  • Helong Zhang
  • Qian Wang
  • Cuilian Zhang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)


Single cell technology has enormously changed the landscape of biomedical science, including single cell omics, gene editing, single cell imaging, single cell (embryo) manipulate, or non-invasive micro-test. Single cell technology also leads the research area of early embryo from basic research to reproductive medical application. We got the knowledge of programming/reprogramming and the epigenetics dynamics in the cell lineage differentiation. In the reproductive medicine, the genomic sequencing of embryo or polar body and the preimplantation genetic diagnosis rely on the single cell techniques. Those discoveries will improve the assisted reproductive technologies, human health, and livestock husbandry. In the future, the comprehensive atlas of cell state and lineage information can be generated for cellular systems by single-cell multi-omics approaches.


Single cell Early embryo Genetics Epigenetics Environment 


  1. 1.
    Goolam M, Scialdone A, Graham SJ, Macaulay IC, Jedrusik A, Hupalowska A et al (2016) Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165(1):61–74. [PubMed: 27015307]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brady G, Barbara M, Iscove NN (1990) Representative in vitro cDNA amplification from individual hemopoietic cells and colonies. Methods Mol Cell Biol 2:17–25. [PubMed: none]Google Scholar
  3. 3.
    Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150(2):402–412. [PubMed: 22817899]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Goetz JJ, Trimarchi JM (2012) Transcriptome sequencing of single cells with smart-Seq. Nat Biotechnol 30(8):763–765. [PubMed: 22871714]CrossRefPubMedGoogle Scholar
  5. 5.
    Yan L, Huang L, Xu L, Huang J, Ma F, Zhu X et al (2015) Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A 112(52):15964–15969. [PubMed: 26712022]CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W et al (2016) Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci U S A 113(42):11907–11912. [PubMed: 27688762]CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1(8489):1077–1081. [PubMed: 2871345]CrossRefPubMedGoogle Scholar
  8. 8.
    Wadhwa PD, Buss C, Entringer S, Swanson JM (2009) Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Semin Reprod Med 27(5):358–368. [PubMed: 19711246]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lo SJ, Yao DJ (2015) Get to understand more from single-cells: current studies of microfluidic-based techniques for single-cell analysis. Int J Mol Sci 16(8):16763–16777. [PubMed: 26213918]CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zong C, Lu S, Chapman AR, Xie XS (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626. [PubMed: 23258894]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gross A, Schoendube J, Zimmermann S, Steeb M, Zengerle R, Koltay P (2015) Technologies for single-cell isolation. Int J Mol Sci 16(8):16897–16919. [PubMed: 26213926]CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Reik W, Romer I, Barton SC, Surani MA, Howlett SK, Klose J (1993) Adult phenotype in the mouse can be affected by epigenetic events in the early embryo. Development 119(3):933–942. [PubMed: 8187648]PubMedGoogle Scholar
  13. 13.
    Spitzer MH, Nolan GP (2016) Mass cytometry: single cells. Many Features Cell 165(4):780–791. [PubMed: 27153492]PubMedGoogle Scholar
  14. 14.
    Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593–597. [PubMed: 23892778]CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhao C, Hu S, Huo X, Zhang Y (2017) Dr.seq2: a quality control and analysis pipeline for parallel single cell transcriptome and epigenome data. PLoS One 12(7):e0180583. [PubMed: 28671995]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ, Sexton DW et al (2013) Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol 31:748–752. [PubMed: 23873083]CrossRefPubMedGoogle Scholar
  17. 17.
    O'Neill LP, VerMilyea MD, Turner BM (2006) Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38(7):835–841. [PubMed: 16767102]CrossRefPubMedGoogle Scholar
  18. 18.
    Shaw L, Sneddon SF, Zeef L, Kimber SJ, Brison DR (2013) Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development. PLoS One 8(5):e64192. [PubMed: 23717564]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Onjiko RM, Moody SA, Nemes P (2015) Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. Proc Natl Acad Sci U S A 112(21):6545–6550. [PubMed: 25941375]CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhu J, Heinecke D, Mulla WA, Bradford WD, Rubinstein B, Box A et al (2015) Single-cell based quantitative assay of chromosome transmission fidelity. G3 (Bethesda) 5(6):1043–1056. [PubMed: 25823586]CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lorthongpanich C, Cheow LF, Balu S, Quake SR, Knowles BB, Burkholder WF et al (2013) Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341(6150):1110–1112. [PubMed: 24009393]CrossRefPubMedGoogle Scholar
  22. 22.
    Laszlo AH, Derrington IM, Brinkerhoff H, Langford KW, Nova IC, Samson JM et al (2013) Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA. Proc Natl Acad Sci U S A 110(47):18904–18909. [PubMed: 24167255]CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schreiber J, Wescoe ZL, Abu-Shumays R, Vivian JT, Baatar B, Karplus K et al (2013) Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc Natl Acad Sci U S A 110(47):18910–18915. [PubMed: 24167260]CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rosen CB, Rodriguez-Larrea D, Bayley H et al (2014) Single-molecule site-specific detection of protein phosphorylation with a nanopore. Nat Biotechnol 32(2):179–181. [PubMed: 24441471]CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Feng Y, Zhang Y, Ying C, Wang D, Du C et al (2015) Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics 13(3):4–16. [PubMed: 25743089]CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y et al (2016) The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534(7609):652–657. [PubMed: 27309802]CrossRefPubMedGoogle Scholar
  27. 27.
    Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241. [PubMed: 21407207]CrossRefPubMedGoogle Scholar
  28. 28.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. [PubMed: 16630819]CrossRefPubMedGoogle Scholar
  29. 29.
    Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9(1):2–6. [PubMed: 17199124]CrossRefPubMedGoogle Scholar
  30. 30.
    Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452(7189):877–881. [PubMed: 18354397]CrossRefPubMedGoogle Scholar
  31. 31.
    Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E et al (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98(24):13734–13738. [PubMed: 11717434]CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Meissner A (2010) Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28(10):1079–1088. [PubMed: 20944600]CrossRefPubMedGoogle Scholar
  33. 33.
    Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55. [PubMed: 24074860]CrossRefPubMedGoogle Scholar
  34. 34.
    Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537. [PubMed: 19603040]CrossRefPubMedGoogle Scholar
  35. 35.
    Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130(24):5869–5884. [PubMed: 14597570]CrossRefPubMedGoogle Scholar
  36. 36.
    Seki Y, Yamaji M, Yabuta Y, Sano M, Shigeta M, Matsui Y et al (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134(14):2627–2638. [PubMed: 17567665]CrossRefPubMedGoogle Scholar
  37. 37.
    Yalcin D, Hakguder ZM, Otu HH (2016) Bioinformatics approaches to single-cell analysis in developmental biology. Mol Hum Reprod 22(3):182–192. [PubMed: 26358759]CrossRefPubMedGoogle Scholar
  38. 38.
    Egea RR, Puchalt NG, Escriva MM, Varghese AC (2014) OMICS: current and future perspectives in reproductive medicine and technology. J Hum Reprod Sci 7(2):73–92. [PubMed: 25191020]CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Park SJ, Shirahige K, Ohsugi M, Nakai K (2015) DBTMEE: a database of transcriptome in mouse early embryos. Nucleic Acids Res 43(Database issue):D771–D776. [PubMed: 25336621]CrossRefPubMedGoogle Scholar
  40. 40.
    Su Y, Shi Q, Wei W (2017) Single cell proteomics in biomedicine: High-dimensional data acquisition, visualization, and analysis. Proteomics 17(3–4). [PubMed: 28128880]CrossRefGoogle Scholar
  41. 41.
    Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20(9–10):532–543. [PubMed: 19760320]CrossRefPubMedGoogle Scholar
  42. 42.
    Boyle AP, Araya CL, Brdlik C, Cayting P, Cheng C, Cheng Y et al (2014) Comparative analysis of regulatory information and circuits across distant species. Nature 512(7515):453–456. [PubMed: 25164757]CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dey G, Meyer T (2015) Phylogenetic profiling for probing the modular architecture of the human genome. Cell Syst 1(2):106–115. [PubMed: 27135799]CrossRefPubMedGoogle Scholar
  44. 44.
    Holliday R (2014) Epigenetics: a historical overview. Epigenetics 1(2):76–80. [PubMed: 17998809]CrossRefGoogle Scholar
  45. 45.
    Zhou L, Baibakov B, Canagarajah B, Xiong B, Dean J (2017) Genetic mosaics and time-lapse imaging identify functions of histone H3.3 residues in mouse oocytes and embryos. Development 144(3):519–528. [PubMed: 27993980]CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR et al (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338(6114):1627–1630. [PubMed: 23258895]CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y et al (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8(2):188–194. [PubMed: 16415856]CrossRefPubMedGoogle Scholar
  48. 48.
    Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM et al (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 10:1115–1121. [PubMed: 20890283]CrossRefGoogle Scholar
  49. 49.
    Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329(5987):78–82. [PubMed: 20595612]CrossRefPubMedGoogle Scholar
  50. 50.
    Umemura Y, Koike N, Ohashi M, Tsuchiya Y, Meng QJ, Minami Y et al (2017) Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development. Proc Natl Acad Sci U S A. pii: 201703170. Epub ahead of print. [PMID: 28827343]Google Scholar
  51. 51.
    Biase FH, Cao X, Zhong S (2014) Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Res 24(11):1787–1796. [PubMed: 25096407]CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zernicka-Goetz M, Morris SA, Bruce AW (2009) Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nat Rev Genet 10(7):467–477. [PubMed: 19536196]CrossRefPubMedGoogle Scholar
  53. 53.
    Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25(10):1491–1498. [PubMed: 26430159]CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28(8):812–828. [PubMed: 24736841]CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Zhao Y, Shen Y, Yang S, Wang J, Hu Q, Wang Y et al (2010) Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 285(7):4355–4365. [PubMed: 19948733]CrossRefPubMedGoogle Scholar
  56. 56.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. [PubMed: 11782440]CrossRefPubMedGoogle Scholar
  57. 57.
    Zheng H, Huang B, Zhang B, Xiang Y, Du Z, Xu Q et al (2016) Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 63(6):1066–1079. [PubMed: 27635762]CrossRefPubMedGoogle Scholar
  58. 58.
    Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330(6004):612–616. [PubMed: 21030644]CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sánchez AA (2006) Planarian regeneration: its end is its beginning. Cell 124(2):241–245. [PubMed: 16439195]CrossRefGoogle Scholar
  60. 60.
    Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N et al (2010) Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329(5995):1068–1071. [PubMed: 20798317]CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3(4):391–401. [PubMed: 18940731]CrossRefPubMedGoogle Scholar
  62. 62.
    Nestorov P, Hotz HR, Liu Z, Peters AH (2015) Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos. Sci Rep 5:14347. [PubMed: 26403153]CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Iyengar S, Farnham PJ (2011) KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 286(30):26267–26276. [PubMed: 21652716]CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB (2012) Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335(6075):1499–1502. [PubMed: 22442485]CrossRefPubMedGoogle Scholar
  65. 65.
    Blauch LR, Gai Y, Khor JW, Sood P, Marshall WF, Tang SKY (2017) Microfluidic guillotine for single-cell wound repair studies. Proc Natl Acad Sci U S A. [PubMed: 28652371]Google Scholar
  66. 66.
    Silva SS, Rowntree RK, Mekhoubad S, Lee JT (2008) X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells. Proc Natl Acad Sci U S A 105(12):4820–4825. [PubMed: 18339803]CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Petropoulos S, Edsgard D, Reinius B, Deng Q, Panula SP, Codeluppi S et al (2016) Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165(4):1012–1026. [PubMed: 27662094]CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E (2004) Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303(5658):644–649. [PubMed: 14671313]CrossRefPubMedGoogle Scholar
  69. 69.
    Kobayashi N, Miyauchi N, Tatsuta N, Kitamura A, Okae H, Hiura H et al (2017) Factors associated with aberrant imprint methylation and oligozoospermia. Sci Rep 7:42336. [PubMed: 28186187]CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y (2017) Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature. [PubMed: 28723896]
  71. 71.
    Chiu YJ, Cai W, Lee T, Kraimer J, Lo YH (2017) Quantitative analysis of exosome secretion rates of single cells. Bio Protoc 7(4). [PubMed: 28603750]Google Scholar
  72. 72.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. [PubMed: 16904174]CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146. [PubMed: 18157115]CrossRefPubMedGoogle Scholar
  74. 74.
    Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL et al (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324(5933):1451–1454. [PubMed: 19520962]CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324(5933):1447–1451. [PubMed: 19520961]CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330(6004):622–627. [PubMed: 21030646]CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40(8):1016–1022. [PubMed: 18622394]CrossRefPubMedGoogle Scholar
  78. 78.
    Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132(4):567–582. [PubMed: 18295576]CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hanna JH, Saha K, Jaenisch R (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143(4):508–525. [PubMed: 21074044]CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Buganim Y, Faddah DA, Cheng AW, Itskovich E, Markoulaki S, Ganz K et al (2012) Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase. Cell 150(6):1209–1222. [PubMed: 22980981]CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yan L, Yang M, Guo H, Yang L, Wu J, Li R et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139. [PubMed: 23934149]CrossRefPubMedGoogle Scholar
  82. 82.
    Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C et al (2017) The Drosophila embryo at single-cell transcriptome resolution. Science. pii: eaan3235. Epub ahead of print. [PMID: 28860209]Google Scholar
  83. 83.
    Brayboy LM, Wessel GM (2016) The double-edged sword of the mammalian oocyte – advantages, drawbacks and approaches for basic and clinical analysis at the single cell level. Mol Hum Reprod 22(3):200–207. [PubMed: 26590170]CrossRefPubMedGoogle Scholar
  84. 84.
    Kohda T, Ishino F (2013) Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos Trans R Soc Lond Ser B Biol Sci 368(1609):20120353. [PubMed: 23166403]CrossRefGoogle Scholar
  85. 85.
    Kohda T (2013) Effects of embryonic manipulation and epigenetics. J Hum Genet 58(7):416–420. [PubMed: 23739123]CrossRefPubMedGoogle Scholar
  86. 86.
    Probst AV, Dunleavy E, Almouzni G (2009) Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10(3):192–206. [PubMed: 19234478]CrossRefPubMedGoogle Scholar
  87. 87.
    Morgan DK, Whitelaw E (2008) The case for transgenerational epigenetic inheritance in humans. Mamm Genome 19(6):394–397. [PubMed: 18663528]CrossRefPubMedGoogle Scholar
  88. 88.
    Kumar M, Kumar K, Jain S, Hassan T, Dada R (2013) Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68(S1):5–14. [PubMed: 23503950]CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Behboodi E, Anderson GB, BonDurant RH, Cargill SL, Kreuscher BR, Medrano JF et al (1995) Birth of large calves that developed from in vitro-derived bovine embryos. Theriogenology 44(2):227–232. [PubMed: 16727722]CrossRefPubMedGoogle Scholar
  90. 90.
    Chavatte-Palmer P, Camous S, Jammes H, Le Cleac'h N, Guillomot M, Lee RS (2012) Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta 33(Suppl):S99–S104. [PubMed: 22000472]CrossRefPubMedGoogle Scholar
  91. 91.
    Wei Y, Chen S, Huang X, Lam SM, Shui G, Sun F (2015) Assisted reproduction causes reduced intrauterus fetal growth by disrupting placental lipid metabolism. bioRxiv 11. [PubMed: none]
  92. 92.
    Macaulay IC, Ponting CP, Voet T (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33(2):155–168. [PubMed: 28089370]CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B et al (2017) CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Gen Genomics 292(3):525–533. [PubMed: 28251317]CrossRefGoogle Scholar
  94. 94.
    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z et al (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372. [PubMed: 25894090]CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X et al (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33(5):581–588. [PubMed: 27052831]CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K et al (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548(7668):413–419. [PMID: 28783728]CrossRefPubMedGoogle Scholar
  97. 97.
    Guo F, Li L, Li J, Wu X, Hu B, Zhu P et al (2017) Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res 27(8):967–988. [PubMed: 28621329]CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Munné S, Wells D (2017) Detection of mosaicism at blastocyst stage with the use of high-resolution next-generation sequencing. Fertil Steril 107(5):1085–1091. [PubMed: 28390692]CrossRefPubMedGoogle Scholar
  99. 99.
    Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630. [PubMed: 23897237]CrossRefPubMedGoogle Scholar
  100. 100.
    Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18(4):675–685. [PubMed: 20412781]CrossRefPubMedGoogle Scholar
  101. 101.
    Yuan GC, Cai L, Elowitz M, Enver T, Fan G, Guo G et al (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18(1):84. [PubMed: 28482897]CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Speicher MR (2013) Single-cell analysis: toward the clinic. Genome Med 5(8):74. [PubMed: 23998189]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yubao Wei
    • 1
  • Helong Zhang
    • 1
  • Qian Wang
    • 1
  • Cuilian Zhang
    • 1
  1. 1.The Reproductive Institute of Henan Provincial People’s Hospital/Reproductive Hospital of Henan ProvinceZhengzhouChina

Personalised recommendations