Advertisement

High Throughput Single Cell RNA Sequencing, Bioinformatics Analysis and Applications

  • Xiaoyun Huang
  • Shiping Liu
  • Liang Wu
  • Miaomiao Jiang
  • Yong HouEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)

Abstract

Single cell sequencing (SCS) can be harnessed to acquire the genomes, transcriptomes and epigenomes from individual cells. Next generation sequencing (NGS) technology is the driving force for single cell sequencing. scRNA-seq requires a lengthy pipeline comprising of single cell sorting, RNA extraction, reverse transcription, amplification, library construction, sequencing and subsequent bioinformatic analysis. Computational algorithms are essential to fulfill many tasks of interest using scRNA-seq data. scRNA-seq has already enabled researchers to revisit long-standing questions in cancer biology, including cancer metastasis, heterogeneity and evolution. Circulating Tumor Cells (CTC) are not only an important mechanism for cancer metastasis, but also provide a possibility to diagnose and monitor cancer in a convenient way independent of surgical resection of the cancer.

Keywords

scRNA-seq Single cell Cancer Bioinformatics 

References

  1. 1.
    Zafar H, Wang Y, Nakhleh L, Navin N, Chen K (2016) Monovar: single-nucleotide variant detection in single cells. Nat Methods 13:505–507.  https://doi.org/10.1038/nmeth.3835 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Knouse KA, Wu J, Amon A (2016) Assessment of megabase-scale somatic copy number variation using single-cell sequencing. Genome Res 26:376–384.  https://doi.org/10.1101/gr.198937.115 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin ML, Zamani Esteki M, Van der Aa N, Mateiu L, McBride DJ, Bignell GR, McLaren S, Teague J, Butler A, Raine K, Stebbings LA, Quail MA, D’Hooghe T, Moreau Y, Futreal PA, Stratton MR, Vermeesch JR, Campbell PJ (2013) Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res 41:6119–6138.  https://doi.org/10.1093/nar/gkt345 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wu L, Zhang X, Zhao Z, Wang L, Li B, Li G, Dean M, Yu Q, Wang Y, Lin X, Rao W, Mei Z, Li Y, Jiang R, Yang H, Li F, Xie G, Xu L, Wu K, Zhang J, Chen J, Wang T, Kristiansen K, Zhang X, Li Y, Yang H, Wang J, Hou Y, Xu X (2015) Full-length single-cell RNA-seq applied to a viral human cancer: applications to HPV expression and splicing analysis in HeLa S3 cells. GigaSci 4:51.  https://doi.org/10.1186/s13742-015-0091-4 CrossRefGoogle Scholar
  5. 5.
    Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620.  https://doi.org/10.1016/j.molcel.2015.04.005 CrossRefPubMedGoogle Scholar
  6. 6.
    Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255.  https://doi.org/10.1038/nature14966 CrossRefPubMedGoogle Scholar
  7. 7.
    Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, Quake SR (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46.  https://doi.org/10.1038/nmeth.2694 CrossRefPubMedGoogle Scholar
  8. 8.
    Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860.  https://doi.org/10.1093/nar/gku555 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820.  https://doi.org/10.1038/nmeth.3035 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ramani V, Deng X, Qiu R, Gunderson KL, Steemers FJ, Disteche CM, Noble WS, Duan Z, Shendure J (2017) Massively multiplex single-cell Hi-C. Nat Methods 14:263–266.  https://doi.org/10.1038/nmeth.4155 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523:486–490.  https://doi.org/10.1038/nature14590 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17:329–340.  https://doi.org/10.1016/j.stem.2015.07.002 CrossRefPubMedGoogle Scholar
  14. 14.
    Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L, Dixon D, Stephenson E, Nilsson E, Grundberg I, McDonald D, Filby A, Li W, De Jager PL, Rozenblatt-Rosen O, Lane AA, Haniffa M, Regev A, Hacohen N (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356.  https://doi.org/10.1126/science.aah4573
  15. 15.
    Linnarsson S, Teichmann SA (2016) Single-cell genomics: coming of age. Genome Biol 17:97.  https://doi.org/10.1186/s13059-016-0960-x CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, Carbone L, Steemers FJ, Adey A (2017) Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods 14:302–308.  https://doi.org/10.1038/nmeth.4154 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, Amit I (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779.  https://doi.org/10.1126/science.1247651 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
  19. 19.
    Yuan J, Sims PA (2016) An automated microwell platform for large-scale single cell RNA-Seq. Sci Rep 6:33883.  https://doi.org/10.1038/srep33883 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fan HC, Fu GK, Fodor SP (2015) Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 347:1258367.  https://doi.org/10.1126/science.1258367 CrossRefPubMedGoogle Scholar
  21. 21.
    Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201.  https://doi.org/10.1016/j.cell.2015.04.044 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161:1202–1214.  https://doi.org/10.1016/j.cell.2015.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
  24. 24.
    Okonechnikov K, Conesa A, García-Alcalde F (2015) Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 32:292–294PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185CrossRefPubMedGoogle Scholar
  26. 26.
    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166CrossRefPubMedGoogle Scholar
  30. 30.
    Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095CrossRefPubMedGoogle Scholar
  31. 31.
    Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–375CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169CrossRefGoogle Scholar
  33. 33.
    Zhang J, Kuo C-CJ, Chen L (2014) WemIQ: an accurate and robust isoform quantification method for RNA-seq data. Bioinformatics 31:878–885btu757CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinf 12:323CrossRefGoogle Scholar
  35. 35.
    Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673CrossRefPubMedGoogle Scholar
  36. 36.
    Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegle O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33:155–160CrossRefPubMedGoogle Scholar
  37. 37.
    Kim JK, Marioni JC (2013) Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol 14:R7CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dueck H, Khaladkar M, Kim TK, Spaethling JM, Francis C, Suresh S, Fisher SA, Seale P, Beck SG, Bartfai T (2015) Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol 16:122CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Xue Z, Huang K, Cai C, Cai L, Jiang C-Y, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA [thinsp] sequencing. Nature 500:593–597CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Grün D, Kester L, Van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Methods 11:637–640CrossRefPubMedGoogle Scholar
  41. 41.
    Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32:1053–1058CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS (2017) Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 49(5):708–718CrossRefPubMedGoogle Scholar
  43. 43.
    Kim DH, Marinov GK, Pepke S, Singer ZS, He P, Williams B, Schroth GP, Elowitz MB, Wold BJ (2015) Single-cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming. Cell Stem Cell 16:88–101CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Pierson E, Yau C (2015) Dimensionality reduction for zero-inflated single cell gene expression analysis. Genome Biology 16:1–10CrossRefGoogle Scholar
  45. 45.
    van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  46. 46.
    Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142CrossRefPubMedGoogle Scholar
  47. 47.
    Xu C, Su Z (2015) Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31:1974–1980btv088CrossRefPubMedGoogle Scholar
  48. 48.
    Guo M, Wang H, Potter SS, Whitsett JA, Xu Y (2015) SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol 11:e1004575CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kharchenko PV, Silberstein L, Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. Nat Methods 11:740–742CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Delmans M, Hemberg M (2016) Discrete distributional differential expression (D 3 E)-a tool for gene expression analysis of single-cell RNA-seq data. BMC Bioinf 17:110CrossRefGoogle Scholar
  52. 52.
    Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, Kendziorski C (2016) A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol 17:222CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Haghverdi L, Buettner F, Theis FJ (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31:2989–2998CrossRefPubMedGoogle Scholar
  55. 55.
    Rizvi AH, Camara PG, Kandror EK, Roberts TJ, Schieren I, Maniatis T, Rabadan R (2017) Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol 35:551–560CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Leng N, Chu L-F, Barry C, Li Y, Choi J, Li X, Jiang P, Stewart RM, Thomson JA, Kendziorski C (2015) Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods 12:947–950CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, Marioni JC (2015) High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol 33:503–509CrossRefPubMedGoogle Scholar
  59. 59.
    Halpern KB, Shenhav R, Matcovitch-Natan O, Tóth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:1128CrossRefGoogle Scholar
  61. 61.
    Schissler AG, Li Q, Chen JL, Kenost C, Achour I, Billheimer DD, Li H, Piegorsch WW, Lussier YA (2016) Analysis of aggregated cell–cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells. Bioinformatics 32:i80–i89CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Matsumoto H, Kiryu H, Furusawa C, Ko MS, Ko SB, Gouda N, Hayashi T, Nikaido ISCODE (2017) An efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33:2314–2321btx194CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gokce O, Stanley GM, Treutlein B, Neff NF, Camp JG, Malenka RC, Rothwell PE, Fuccillo MV, Südhof TC, Quake SR (2016) Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep 16:1126–1137CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Welch JD, Hu Y, Prins JF (2016) Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res 44:e73CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Deng Q, Ramsköld D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196CrossRefPubMedGoogle Scholar
  66. 66.
    Reinius B, Mold JE, Ramsköld D, Deng Q, Johnsson P, Michaëlsson J, Frisén J, Sandberg R (2016) Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat Genet 48:1430–1435CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hong Y, Li Z, Zhang Q (2016) A circulating tumor cell cluster-based model for tumor metastasis (Hypothesis). Oncol Lett 12:4891–4895.  https://doi.org/10.3892/ol.2016.5358 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, Desai R, Fox DB, Brannigan BW, Trautwein J, Arora KS, Desai N, Dahl DM, Sequist LV, Smith MR, Kapur R, Wu CL, Shioda T, Ramaswamy S, Ting DT, Toner M, Maheswaran S, Haber DA (2015) RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349:1351–1356.  https://doi.org/10.1126/science.aab0917 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw ML, Rodman C, Gillespie SM, Dionne D, Luo CC, Ravichandran H, Mylvaganam R, Mount C, Onozato ML, Nahed BV, Wakimoto H, Curry WT, Iafrate AJ, Rivera MN, Frosch MP, Golub TR, Brastianos PK, Getz G, Patel AP, Monje M, Cahill DP, Rozenblatt-Rosen O, Louis DN, Bernstein BE, Regev A, Suva ML (2017) Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355.  https://doi.org/10.1126/science.aai8478
  70. 70.
    Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, Dutton-Regester K, Lin JR, Cohen O, Shah P, Lu D, Genshaft AS, Hughes TK, Ziegler CG, Kazer SW, Gaillard A, Kolb KE, Villani AC, Johannessen CM, Andreev AY, Van Allen EM, Bertagnolli M, Sorger PK, Sullivan RJ, Flaherty KT, Frederick DT, Jane-Valbuena J, Yoon CH, Rozenblatt-Rosen O, Shalek AK, Regev A, Garraway LA (2016) Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352:189–196.  https://doi.org/10.1126/science.aad0501 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mbeunkui F, Johann DJ Jr (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63:571–582.  https://doi.org/10.1007/s00280-008-0881-9 CrossRefPubMedGoogle Scholar
  72. 72.
    Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, Liu Z, Dong M, Hu X, Ouyang W, Peng J, Zhang Z (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169:1342–1356. e1316.  https://doi.org/10.1016/j.cell.2017.05.035 CrossRefPubMedGoogle Scholar
  73. 73.
    Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, Meinhof K, Chow A, Kim-Shulze S, Wolf A, Medaglia C, Li H, Rytlewski JA, Emerson RO, Solovyov A, Greenbaum BD, Sanders C, Vignali M, Beasley MB, Flores R, Gnjatic S, Pe’er D, Rahman A, Amit I, Merad M (2017) Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–765., e717.  https://doi.org/10.1016/j.cell.2017.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, Ryu HS, Kim S, Lee JE, Park YH, Kan Z, Han W, Park WY (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8:15081.  https://doi.org/10.1038/ncomms15081 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, van den Broek M, Beisel C, Stadler MB, Gedye C, Reis B, Pe’er D, Bodenmiller B (2017) An immune atlas of clear cell renal cell carcinoma. Cell 169:736–749. e718.  https://doi.org/10.1016/j.cell.2017.04.016 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefPubMedGoogle Scholar
  77. 77.
    Zhao Z, Goldin L, Liu S, Wu L, Zhou W, Lou H, Yu Q, Tsang SX, Jiang M, Li F, McMaster M, Li Y, Lin X, Wang Z, Xu L, Marti G, Li G, Wu K, Yeager M, Yang H, Xu X, Chanock SJ, Li B, Hou Y, Caporaso N, Dean M (2016) Evolution of multiple cell clones over a 29-year period of a CLL patient. Nat Commun 7:13765.  https://doi.org/10.1038/ncomms13765 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A, McCombie WR, Hicks J, Wigler M (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94.  https://doi.org/10.1038/nature09807 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, He W, Zeng L, Xing M, Wu R, Jiang H, Liu X, Cao D, Guo G, Hu X, Gui Y, Li Z, Xie W, Sun X, Shi M, Cai Z, Wang B, Zhong M, Li J, Lu Z, Gu N, Zhang X, Goodman L, Bolund L, Wang J, Yang H, Kristiansen K, Dean M, Li Y, Wang J (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895.  https://doi.org/10.1016/j.cell.2012.02.025 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, Wu H, Ye X, Ye C, Wu R, Jian M, Chen Y, Xie W, Zhang R, Chen L, Liu X, Yao X, Zheng H, Yu C, Li Q, Gong Z, Mao M, Yang X, Yang L, Li J, Wang W, Lu Z, Gu N, Laurie G, Bolund L, Kristiansen K, Wang J, Yang H, Li Y, Zhang X, Wang J (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885.  https://doi.org/10.1016/j.cell.2012.02.028 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, Wildberg A, Gao D, Fung HL, Chen S, Vijayaraghavan R, Wong J, Chen A, Sheng X, Kaper F, Shen R, Ronaghi M, Fan JB, Wang W, Chun J, Zhang K (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352:1586–1590.  https://doi.org/10.1126/science.aaf1204 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142.  https://doi.org/10.1126/science.aaa1934 CrossRefPubMedGoogle Scholar
  83. 83.
    Regev A, Teichmann S, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Gottgens B, Hacohen N, Haniffa M, Hemberg M, Kim SK, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundeberg J, Majumder P, Marioni J, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe’er D, Philipakis A, Ponting CP, Quake SR, Reik W, Rozenblatt-Rosen O, Sanes JR, Satija R, Shumacher T, Shalek AK, Shapiro E, Sharma P, Shin J, Stegle O, Stratton M, Stubbington MJT, van Oudenaarden A, Wagner A, Watt FM, Weissman JS, Wold B, Xavier RJ, Yosef N (2017) The human cell atlas. bioRxiv.  https://doi.org/10.1101/121202
  84. 84.
    Muraro MJ, Dharmadhikari G, Grun D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJ, van Oudenaarden A (2016) A single-cell transcriptome atlas of the human pancreas. Cell Syst 3:385–394. e383.  https://doi.org/10.1016/j.cels.2016.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T, Yao Z, Levi B, Gray LT, Sorensen SA, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin SM, Hawrylycz M, Koch C, Zeng H (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346.  https://doi.org/10.1038/nn.4216 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, Bernstein BE (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401.  https://doi.org/10.1126/science.1254257 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Marusyk A, Almendro V, Polyak K (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334.  https://doi.org/10.1038/nrc3261 CrossRefPubMedGoogle Scholar
  88. 88.
    Heath JR, Ribas A, Mischel PS (2016) Single-cell analysis tools for drug discovery and development. Nat Rev Drug Discov 15:204–216.  https://doi.org/10.1038/nrd.2015.16 CrossRefPubMedGoogle Scholar
  89. 89.
    Hood L (2013) Systems biology and p4 medicine: past, present, and future. Rambam Maimonides Med J 4:e0012.  https://doi.org/10.5041/RMMJ.10112 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Xiaoyun Huang
    • 1
  • Shiping Liu
    • 1
  • Liang Wu
    • 1
  • Miaomiao Jiang
    • 1
  • Yong Hou
    • 1
    Email author
  1. 1.BGI-ShenzhenShenzhenChina

Personalised recommendations