Advertisement

Single-Cell Non-coding RNA in Embryonic Development

  • Qiang Fu
  • Chuan-Jiang Liu
  • Zhen-Sheng Zhai
  • Xu Zhang
  • Tao Qin
  • Hong-Wei Zhang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)

Abstract

Non-coding RNAs (ncRNAs) have significant regulatory functions on the regulation of gene expression of various life activities after transcription, even though they do not encode proteins. During the development of embryos, ncRNAs, such as long non-coding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and Piwi-interacting RNAs (piRNAs), have been widely proven as key regulators. The emerging single-cell RNA sequencing technique is powerful for profiling “cell-to-cell” variability at the genomic level. It has been applied to detect the expression of ncRNAs during embryo development. In this chapter, we pay close attention to single-cell ncRNA expression and summarize their roles in embryo development.

Keywords

Single-Cell Non-coding RNA Embryo 

Notes

Acknowledgements and Conflicting Declaration

Thanks to Professor Xiang-dong Wang and Jian-qin Gu for their help and support. We declare that we have no financial relationships with other people or organizations that can inappropriately influence our work, Additionally, there are no professional or other personal interests of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Single-cell non-coding RNAs in embryonic development”.

References

  1. 1.
    Kraushaar DC, Zhao K (2013) The epigenomics of embryonic stem cell differentiation. Int J Biol Sci 9(10):1134–1144PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–R29PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Seto AG, Kingston RE, Lau NC (2007) The coming of age for Piwi proteins. Mol Cell 26(5):603–609PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bouckenheimer J, Assou S, Riquier S, Hou C, Philippe N, Sansac C, Lavabre-Bertrand T, Commes T, Lemaître JM, Boureux A et al (2016) Long non-coding RNAs in human early embryonic development and their potential in ART. Hum Reprod Update 23(1):19–40PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Tulay P, Sengupta SB (2016) MicroRNA expression and its association with DNA repair in preimplantation embryos. J Reprod Dev 62(3):225–234PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Skreka K, Schafferer S, Nat IR, Zywicki M, Salti A, Apostolova G, Griehl M, Rederstorff M, Dechant G, Hüttenhofer A (2012) Identification of differentially expressed non-coding RNAs in embryonic stem cell neural differentiation. Nucleic Acids Res 40(13):6001–6015PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Huang Y, Bai JY, Ren HT (2014) PiRNAs biogenesis and its functions. Bioorg Khim 40(3):320–326PubMedPubMedCentralGoogle Scholar
  12. 12.
    Saliba AE, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42(14):8845–8860PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43):4577–4587PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T (2015) Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 16:18PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Xu D, Yang F, Yuan JH, Zhang L, Bi HS, Zhou CC, Liu F, Wang F, Sun SH (2013) Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/β-catenin signaling. Hepatology 58(2):739–751PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Perry RB, Ulitsky I (2016) The functions of long noncoding RNAs in development and stem cells. Development 143(21):3882–3894PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rivera RM, Ross JW (2013) Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol 113(3):423–432PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Briggs SF, Dominguez AA, Chavez SL, Reijo Pera RA (2015) Single-Cell XIST expression in human preimplantation embryos and newly reprogrammed female induced pluripotent stem cells. Stem Cells 33(6):1771–1781PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chen LL, Zhao JC (2014) Functional analysis of long noncoding RNAs in development and disease. Adv Exp Med Biol 825:129–158PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bortolin-Cavaillé ML, Cavaillé J (2012) The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res 40(14):6800–6807PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20(9):1131–1139PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593–597PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Lv J, Liu H, Yu S, Liu H, Cui W, Gao Y, Zheng T, Qin G, Guo J, Zeng T et al (2015) Identification of 4438 novel lincRNAs involved in mouse pre-implantation embryonic development. Mol Gen Genomics 290(2):685–697CrossRefGoogle Scholar
  25. 25.
    Liu R, Zhang W, Liu ZQ, Zhou HH (2017) Associating transcriptional modules with colon cancer survival through weighted gene co-expression network analysis. BMC Genomics 18(1):361PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Qiu JJ, Ren ZR, Yan JB (2016) Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data. Oncotarget 7(38):61215–61228PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12):1957–1966PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24):3016–3027PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Qin T, Fu Q, Pan YF, Liu CJ, Wang YZ, Hu MX, Tang Q, Zhang HW (2014) Expressions of miR-22 and miR-135a in acute pancreatitis. J Huazhong Univ Sci Technolog Med Sci 34(2):225–233PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Petersen CP, Bordeleau ME, Pelletier J, Sharp PA (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21(4):533–542PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934PubMedCrossRefGoogle Scholar
  38. 38.
    Altana V, Geretto M, Pulliero A (2015) MicroRNAs and physical activity. Microrna 4(2):74–85PubMedCrossRefGoogle Scholar
  39. 39.
    Wei W, Hou J, Alder O, Ye X, Lee S, Cullum R, Chu A, Zhao Y, Warner SM, Knight DA et al (2013) Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b and mir20a in repressing transforming growth factor-beta signaling. Hepatology 57(6):2491–2501PubMedCrossRefGoogle Scholar
  40. 40.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN (2009) Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 28(20):3157–3170PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tata PR, Tata NR, Kühl M, Sirbu IO (2011) Identification of a novel epigenetic regulatory region within the pluripotency associated microRNA cluster, EEmiRC. Nucleic Acids Res 39(9):3574–3581PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Neveu P, Kye MJ, Qi S, Buchholz DE, Clegg DO, Sahin M, Park IH, Kim KS, Daley GQ, Kornblum HI et al (2010) MicroRNA profiling reveals two distinct p53-related human pluripotent stem cell states. Cell Stem Cell 7(6):671–681PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21(6):644–648PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21(6):682–693PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    He Y, Huang CX, Chen N, Wu M, Huang Y, Liu H, Tang R, Wang WM, Wang HL (2017) The zebrafish miR-125c is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations and embryogenesis. Oncotarget 8:73846–73859PubMedPubMedCentralGoogle Scholar
  52. 52.
    Tang F, Hajkova P, Barton SC, Lao K, Surani MA (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34(2):e9PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    De Pietri Tonelli D, Calegari F, Fei JF, Nomura T, Osumi N, Heisenberg CP, Huttner WB (2006) Single-cell detection of microRNAs in developing vertebrate embryos after acute administration of a dual-fluorescence reporter/sensor plasmid. BioTechniques 41(6):727–732PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K, Surani MA (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6(5):468–478PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J (2011) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9(1):72–74PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Koster MJ, Timmers HT (2015) Regulation of anti-sense transcription by Mot1p and NC2 via removal of TATA-binding protein (TBP) from the 3′-end of genes. Nucleic Acids Res 43(1):143–152PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Faridani OR, Abdullayev I, Hagemann-Jensen M, Schell JP, Lanner F, Sandberg R (2016) Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol 34(12):1264–1266PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Petkovic S, Müller S (2015) RNA circularization strategies in vivo and in vitro. Nucleic Acids Res 43(4):2454–2465PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    He J, Xie Q, Xu H, Li J, Li Y (2017) Circular RNAs and cancer. Cancer Lett 396:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochim Biophys Acta 1859(1):163–168PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Li J, Yang J, Zhou P, Le Y, Zhou C, Wang S, Xu D, Lin HK, Gong Z (2015) Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5(2):472–480PubMedPubMedCentralGoogle Scholar
  63. 63.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z, Fang X, Shorter J, Krogan NJ, Finkbeiner S et al (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44(12):1302–1309PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Li F, Zhang L, Li W, Deng J, Zheng J, An M, Lu J, Zhou Y (2015) Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget 6(8):6001–6013PubMedPubMedCentralGoogle Scholar
  70. 70.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, Yang BB (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24(2):357–370PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M (2017) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16(1):94PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Cui X, Niu W, Kong L, He M, Jiang K, Chen S, Zhong A, Li W, Lu J, Zhang L (2016) hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med 10(9):943–952PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Boyer TR, Erickson RP (1994) Detection of circular and linear transcripts of Sry in pre-implantation mouse embryos: differences in requirement for reverse transcriptase. Biochem Biophys Res Commun 198(2):492–496PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC, Salzman J (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, Huang Y (2015) Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol 16:148PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Kiss-László Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85(7):1077–1088PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109(2):145–148PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Jády BE, Kiss T (2001) A small nucleolar guide RNA functions both in 2’-O-ribose methylation and pseudouridylation of the U5 spliceosomal RNA. EMBO J 20(3):541–551PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ronchetti D, Todoerti K, Tuana G, Agnelli L, Mosca L, Lionetti M, Fabris S, Colapietro P, Miozzo M, Ferrarini M et al (2012) The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J 2:e96PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Atzorn V, Fragapane P, Kiss T (2004) U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol Cell Biol 24(4):1769–1778PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Marz M, Gruber AR, Höner Zu Siederdissen C, Amman F, Badelt S, Bartschat S, Bernhart SH, Beyer W, Kehr S, Lorenz R et al (2011) Animal snoRNAs and scaRNAs with exceptional structures. RNA Biol 8(6):938–946PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Weinstein LB, Steitz JA (1999) Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol 11(3):378–384PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27(7):344–351PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wan G, Liu Y, Han C, Zhang X, Lu X (2014) Noncoding RNAs in DNA repair and genome integrity. Antioxid Redox Signal 20(4):655–677PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS (2009) Small RNAs derived from snoRNAs. RNA 15(7):1233–1240PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kishore S, Stamm S (2006) The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science 311(5758):230–232PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, Garnica A, Cheung SW, Beaudet AL (2008) Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 40(6):719–721PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Higa-Nakamine S, Suzuki T, Uechi T, Chakraborty A, Nakajima Y, Nakamura M, Hirano N, Suzuki T, Kenmochi N (2012) Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res 40(1):391–398PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Fong YW, Ho JJ, Inouye C, Tjian R (2014) The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells. elife 3Google Scholar
  93. 93.
    Hirakata S, Siomi MC (2016) piRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim Biophys Acta 1859(1):82–92PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12(4):246–258PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, Iovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442(7099):203–207PubMedPubMedCentralGoogle Scholar
  96. 96.
    Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB et al (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Matsumoto N, Nishimasu H, Sakakibara K, Nishida KM, Hirano T, Ishitani R, Siomi H, Siomi MC, Nureki O (2016) Crystal structure of silkworm PIWI-clade Argonaute Siwi bound to piRNA. Cell 167(2):484–497.e9PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Malone CD, Hannon GJ (2009) Small RNAs as guardians of the genome. Cell 136(4):656–668PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316(5825):744–747PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling AL, Bergmann M, Goodnow CC, Ormandy CJ, Wong L et al (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the Spermatogenic program in the mouse. PLoS Genet 11(10):e1005620PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Watanabe T, Lin H (2014) Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs. Mol Cell 56(1):18–27PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Erwin AA, Galdos MA, Wickersheim ML, Harrison CC, Marr KD, Colicchio JM, Blumenstiel JP (2015) piRNAs are associated with diverse Transgenerational effects on gene and Transposon expression in a hybrid dysgenic syndrome of D. virilis. PLoS Genet 11(8):e1005332PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lau NC, Ohsumi T, Borowsky M, Kingston RE, Blower MD (2009) Systematic and single cell analysis of Xenopus Piwi-interacting RNAs and Xiwi. EMBO J 28(19):2945–2958PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Qiang Fu
    • 1
  • Chuan-Jiang Liu
    • 1
  • Zhen-Sheng Zhai
    • 1
  • Xu Zhang
    • 1
  • Tao Qin
    • 1
  • Hong-Wei Zhang
    • 1
  1. 1.Department of SurgeryHenan Provincial People’s HospitalZhengzhouChina

Personalised recommendations