Advertisement

Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics

  • Jufang Yao
  • Hui-Li Dai
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1068)

Abstract

Functional genomics aims to develop an in-depth understanding of how specific gene dysfunctions are related to diseases. A common method for investigating the genome and its complex functions is via perturbation of the interactions between the DNA, RNA and their protein respective protein derivatives. Commonly, arrayed and pooled genetic screens are utilized to achieve this and in recent years have been fundamental in achieving the current level of understanding for gene dysfunctions. However, they are limited in specific aspects which scientists have attempted to address. Clustered regularly palindromic repeats (CRISPR)-based methods for genetic screens have in recent years become more prevalent but crucially shared similar properties to previous methods and failing to provide a distinct advantage over previous methods. CROP-seq, Perturb-seq, and CRISPR-seq have combined CRISPR and single-cell RNA-sequencing (scRNA-seq) and is the newest addition to the geneticist’s arsenal, providing scientists with methods to edit DNA with improved speed, accuracy, and efficiency which could usher us into a new era of study methods for functional genomics. We briefly overview the CRISPR-Cas9 systems, the evolution of genetic screening in recent years, and evaluate and discuss the significance of CROP-seq, Perturb-seq, and CRISPR-seq.

Keywords

CRISPR Genomics Gene editing Screening Single cell 

References

  1. 1.
    Fang H, Wang W (2016) Could CRISPR be the solution for gene editing's Gordian knot? Cell Biol Toxicol 32(6):465–467CrossRefPubMedGoogle Scholar
  2. 2.
    Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E et al (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167(7):1883–1896.e15.  https://doi.org/10.1016/j.cell.2016.11.039CrossRefPubMedGoogle Scholar
  3. 3.
    Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L et al (2016) Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–1866.e17.  https://doi.org/10.1016/j.cell.2016.11.038CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y et al (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167(7):1867–1882.e21.  https://doi.org/10.1016/j.cell.2016.11.048CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P, Klughammer J et al (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14(3):297–301.  https://doi.org/10.1038/nmeth.4177. Epub 2017 Jan 18CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477.  https://doi.org/10.1038/nrmicro2577CrossRefPubMedGoogle Scholar
  7. 7.
    Sakuma T, Yamamoto T (2017) Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol 33(6):501–505.  https://doi.org/10.1007/s10565-017-9409-6CrossRefPubMedGoogle Scholar
  8. 8.
    Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676.  https://doi.org/10.1038/nbt.2889. Epub 2014 Apr 20CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661.  https://doi.org/10.1016/j.cell.2014.09.029CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2):442–451.  https://doi.org/10.1016/j.cell.2013.06.044CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O'Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ (2015) A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res 43(6):3389–3404.  https://doi.org/10.1093/nar/gkv137CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683.  https://doi.org/10.1038/nbt.2916CrossRefPubMedGoogle Scholar
  13. 13.
    Guo L, Zhang S, Zhang B, Chen W, Li X, Zhang W et al (2016) Silencing GTSE-1 expression inhibits proliferation and invasion of hepatocellular carcinoma cells. Cell Biol Toxicol 32(4):263–274.  https://doi.org/10.1007/s10565-016-9327-zCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    biology KWGJM (2012) Use and abuse of RNAi to study mammalian gene function. Science 337(6093):421–422.  https://doi.org/10.1126/science.1225787CrossRefGoogle Scholar
  15. 15.
    Paes BCMF, Moço PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ et al (2017) Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol 33(3):233–250.  https://doi.org/10.1007/s10565-016-9377-2CrossRefPubMedGoogle Scholar
  16. 16.
    Lin C, Chen S, Li Y (2017) T cell modulation in immunotherapy for hematological malignancies. Cell Biol Toxicol 33(4):323–327.  https://doi.org/10.1007/s10565-017-9397-6CrossRefPubMedGoogle Scholar
  17. 17.
    Xu M, Wang X (2017) Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol 33(4):361–371.  https://doi.org/10.1007/s10565-017-9393-xCrossRefPubMedGoogle Scholar
  18. 18.
    Echeverri CJ, Beachy PA, Baum B, Boutros M, Buchholz F, Chanda SK et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods 3(10):777–779CrossRefPubMedGoogle Scholar
  19. 19.
    Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84.  https://doi.org/10.1126/science.1246981CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu Z, Wang DC, Popescu LM, Wang X (2014) Single-cell transcriptome in the identification of disease biomarkers: opportunities and challenges. J Transl Med 12:212.  https://doi.org/10.1186/s12967-014-0212-3CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12(4):828–863.  https://doi.org/10.1038/nprot.2017.016CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Whittaker SR, Theurillat JP, Van Allen E, Wagle N, Hsiao J, Cowley GS et al (2013) A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 3(3):350–362.  https://doi.org/10.1158/2159-8290.CD-12-0470CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang W, Wang X (2017) Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol 33(3):207–210.  https://doi.org/10.1007/s10565-017-9396-7CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kumar D, Anand T, Kues WA (2017) Clinical potential of human-induced pluripotent stem cells: perspectives of induced pluripotent stem cells. Cell Biol Toxicol 33(2):99–112.  https://doi.org/10.1007/s10565-016-9370-9CrossRefPubMedGoogle Scholar
  25. 25.
    Wang W, Gao D, Wang X (2017) Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol 34(1):1–6.  https://doi.org/10.1007/s10565-017-9404-yCrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Devine H, Patani R (2017) The translational potential of human induced pluripotent stem cells for clinical neurology: the translational potential of hiPSCs in neurology. Cell Biol Toxicol 33(2):129–144.  https://doi.org/10.1007/s10565-016-9372-7CrossRefPubMedGoogle Scholar
  27. 27.
    Wang W, Zhu B, Wang X (2017) Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol 33(5):423–427.  https://doi.org/10.1007/s10565-017-9400-2CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM (2017) Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol 33(2):83–97.  https://doi.org/10.1007/s10565-016-9367-4. Epub 2016 Oct 19CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu Z, Qiu S, Shao K, Hou Y (2017) Progress and challenges of sequencing and analyzing circulating tumor cells. Cell Biol Toxicol.  https://doi.org/10.1007/s10565-017-9418-5
  30. 30.
    Wang X (2016) New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol 32(5):359–361.  https://doi.org/10.1007/s10565-016-9350-0CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jufang Yao
    • 1
  • Hui-Li Dai
    • 2
  1. 1.Department of Animal CenterShanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations